

A83 Rest and Be Thankful

LTS EIAR VOLUME 4, APPENDIX 19.5 - WATER QUALITY ASSESSMENT

Transport Scotland

A83AAB-AWJ-EAC-LTS_GEN-RP-LE-000296

A19-5.Surface Water Resources and Water Quality Assessment

A19-5.1. Introduction

- A19-5.1.1. This technical appendix provides the assessment of potential impacts (construction and operational) on surface water resources and water quality, in respect of the Proposed Scheme (Chapter 4: The Proposed Scheme) and the Proposed Scheme drainage design; within the context of relevant legislation, policy and guidance, Volume 4 Appendix 19.1 Road Drainage and Water Environment Legislation, Policy and Guidance.
- A19-5.1.2. Potential impacts are assessed cognisant of embedded mitigation, Section A19-5.6. Residual effects are then identified, and consideration is given to any requirement for specific mitigation measures to avoid, minimise, restore or offset these.

A19-5.2. Legislation, Policy, and Guidance

- A19-5.2.1. Legislation, policy, and guidance relevant to the assessment of potential impacts on surface water resources and water quality, construction and operational, is described in Volume 4, Appendix 19.1 Road Drainage and the Water Environment Legislation, Policy and Guidance.
- A19-5.2.2. The European Union (EU) Water Framework Directive (WFD) is the principal driver for the assessment of potential impacts on water quality; under which the status of water is assessed using a range of quality indicators (physico-chemical, biological and hydromorphological), to give a holistic assessment of aquatic ecological health.
- A19-5.2.3. The WFD includes five quality classes (High, Good, Moderate, Poor and Bad) and establishes a requirement to identify and monitor a range of existing pressures on water bodies which may threaten the objectives of the WFD. The

objective of the WFD is for all water bodies to achieve or maintain an overall status of 'good' by 2027.

A19-5.2.4. Guidance on the requirements for assessment and management of the impacts that road projects can have on the water environment is provided in the <u>Design</u> <u>Manual for Roads and Bridges (DMRB) document, LA 113</u> (LA 113); and is supported by Scottish Environment Protection Agency (SEPA) guidance document <u>WAT-SG-53</u> which provides guidance on environmental and discharge standards for surface water; and regulatory method <u>WAT-RM-08</u> which provides guidance on the regulation of surface water discharges from built developments including roads. Further guidance on the control of water pollution is also provided in the Construction Industry Research and Innovation Association (CIRIA) documents, <u>C532</u> and <u>C648</u>.

A19-5.3. Assessment Methods

Surface Water Resources

A19-5.3.1. Potential impacts on surface water resources (public and private water supplies) have (informed by baseline data) been evaluated qualitatively based on a source-pathway-receptor (SPR) approach to determine potential hydrological linkages between construction of the Proposed Scheme and water supply sources (public mains/surface abstractions), supply infrastructure (e.g. pipework) and supplies (e.g. properties and taps, etc).

Water Quality

- A19-5.3.2. For construction the assessment is based on qualitative values.
- A19-5.3.3. For operation, DMRB-compliant routine runoff and accidental spillage assessments were undertaken for the A83 mainline (not for the temporary improvements to the OMR), in accordance with LA 113.

HEWRAT Routine Runoff Assessment

- A19-5.3.4. The assessment of routine runoff is comprised of a Highways England [now National Highways] Water Risk Assessment Tool' (HEWRAT) assessment and an Environmental Quality Standards (EQS) assessment, described below:
 - HEWRAT Assessment: a Microsoft Excel application that assess the shortterm (related to the intermittent nature of road runoff) risks associated with temporary 'acute' (soluble) and permanent 'chronic' (sediment bound) pollution impacts on aquatic ecology.
 - EQS Assessment: the maximum permissible annual average concentrations of potentially hazardous chemicals, defined under the WFD. Long-term risks over the period of one year are assessed by comparing the assessed annual average concentration of pollutants within discharges with published EQS for those pollutants, e.g. copper and zinc.
- A19-5.3.5. Both assessments require data pertaining to Proposed Scheme points of discharge into receiving watercourses, permeable and impermeable areas of drainage networks, traffic volumes, Q₉₅ flows (flow exceeded 95 % of the time), and channel dimensions including bed width, side slope and slope.
- A19-5.3.6. HEWRAT is a tiered consequential system which involves up to three assessment stages:
 - Step 1 determines pollutant concentrations in surface runoff without sustainable drainage systems (SuDS) mitigation or in-river dilution
 - Step 2 determines in-river pollutant concentrations after in-river dilution and dispersion without SuDS mitigation and
 - Step 3 considers the in-river pollutant concentrations with active SuDS mitigation.
- A19-5.3.7. Outfalls are first assessed on an individual (non-cumulative) basis and must pass both the soluble pollutants and sediment-bound pollutants aspects of the assessment. HEWRAT also applies for any cumulative assessments (two types noted below) dependent on the relative proximity of outfalls:

- Cumulative assessment including sediments (outfalls within 100m) and
- Cumulative assessment for solubles only (outfalls between 100m and 1km apart).
- A19-5.3.8. For soluble pollutants, HEWRAT calculates in-river concentrations of soluble copper and zinc for approximately 1000 stochastically generated rainfall events. For each rainfall event, the calculated soluble copper and zinc concentrations are compared with in-built thresholds, and the number of exceedances across the 1000 rainfall events calculated. This is then compared with in-built exceedance thresholds, which vary depending on whether there are sensitive sites such as Sites of Special Scientific Interest (SSSI) located downstream of the proposed discharge location. For less sensitive locations it is considered acceptable for the 24 hour copper and zinc concentration thresholds to be exceeded twice a year on average, however if a SSSI was located within 1km downstream of the discharge, the number of exceedances considered acceptable in a year on average, would be halved to once per year. The number of exceedances determines whether the proposed discharge passes or fails the soluble pollutants aspect of the assessment.
- A19-5.3.9. For sediment-bound pollutants, the ability of the receiving watercourse to disperse sediments is considered and, if sediment is expected to accumulate, the potential extent of sediment coverage is also considered. The HEWRAT assessment estimates the river velocity under low flow conditions and assumes that sediment arriving in the river when the velocity is less than 0.1m/s accumulates. A basic estimation of velocity is calculated iteratively using the cross-sectional area of the river channel and the flow volume during low flow conditions. The extent of deposition is evaluated by calculating the deposition index (DI) value. As such, to pass the sediment assessment within HEWRAT, the discharge under assessment must pass both the solubles and sediments aspects.
- A19-5.3.10. Where failures occur, mitigation measures in the form of SuDS should be considered. The pollutant removal efficiency (expressed as a percentage reduction in pollutant concentration) of the SuDS treatment-train can then be

applied to the calculations and the assessment re-run. Where necessary, the drainage design is modified until each of the drainage networks achieves an overall assessment 'pass' for all aspects of including

A19-5.3.11. Indicative treatment efficiency values applied within the assessment are based on those documented [*Table 8.3.2 N1 Pollution and flow control measures options*, CG501] and summarised in Table 19-5.1, below, specific to measures identified for the Proposed Scheme.

Table 19-5.1 Indicative Treatment Efficiencies of Drainag	e systems
---	-----------

Name of measure and indicative treatment efficiencies	Suspended Solids (% removal)	Dissolved Copper (% removal)	Dissolved Zinc (% removal)
Filter drain	60	0	45
Dry detention basin	50	0	0

- A19-5.3.12. HEWRAT also calculates the annual average concentration (AAC) of soluble copper and soluble zinc for the proposed discharge; these are then compared with published EQS (below) to determine pass or failure of the EQS assessment:
 - Copper: an AAC of 1 µg/l for bioavailable copper and
 - Zinc: an AAC of 10.9 µg/l for bioavailable zinc.
- A19-5.3.13. Comparing these calculated values with the bioavailable EQS generally indicates this process provides a very conservative assessment of the routine runoff impacts, with a degree of comfort in the Method A assessment. In exceptional circumstances this approach can be overly conservative leading to very onerous mitigation requirements, particularly as the bioavailable proportion of soluble metals (which can cause toxic effect) is often substantially lower than the total soluble value calculated in HEWRAT.

Accidental Spillage Assessment

- A19-5.3.14. The LA 113 Appendix D Spillage Assessment takes the form of a risk assessment, where the risk is expressed as the annual probability of a serious pollution incident occurring. This risk is the product of two probabilities:
 - the probability that an accident will occur, resulting in a serious spillage of a polluting substance on the carriageway and
 - the probability that, if such a spillage did occur, the polluting substance would reach the receiving water body and cause a serious pollution incident.
- A19-5.3.15. The probability of a serious spillage occurring is dependent on factors including; traffic volumes, percentage of heavy goods vehicles in the traffic volumes, whether the road is motorway, rural or urban trunk road, the road type categories within the road drainage catchment under assessment i.e. 'no junction', 'slip road', 'crossroad' or 'roundabout' and the length of each road type within the catchment. The probability, of a serious spillage subsequently causing a serious pollution incident, is dependent on the proximity of a receiving surface water body and the response time of the emergency services, i.e. less than 20 minutes, less than one hour, or greater than one hour.
- A19-5.3.16. An annual probability of 1% (i.e. a 1 in 100 chance of a serious pollution incident occurring in any one year) is typically considered an acceptable risk; however, where an outfall discharges within 1km of a sensitive receptor such as a nationally designated conservation site e.g. a SSSI, a higher level of protection is required, such that the risk has no greater annual probability than 0.5% i.e. a 1 in 200 chance of occurring in any one year.

Limitations

- A19-5.3.17. The following limitations in the use of HEWRAT are acknowledged:
 - HEWRAT uses two-way Annual Average Daily Traffic (AADT) volumes in the estimation of pollutant build-up on the road, where AADT data is entered in broad bands of 10,000 to 50,000, 50,000 to 100,000, and >100,000. Given that the (high estimate) AADT for the Proposed Scheme

of 8,948 is less than the lowest traffic band, overestimation of the pollutant concentrations in the road runoff is likely.

- Treatment percentages returned by HEWRAT are very precise, however the guidance on the treatment efficiency of SuDS provided in <u>CG501</u> can only be used as broad indicator of performance; therefore a degree of pragmatism is needed when designing and assessing road drainage networks and treatment-trains.
- It is necessary to select a rainfall site from an embedded list of 21 sites across the UK, of which only three are in Scotland. The closest and most representative site is Ardtalnaig (near Aberfeldy). The standard annual average rainfall (SAAR) at Ardtalnaig is given as 1343.9mm; however, a review of <u>National River Flow Archive (NRFA)</u> rainfall data in proximity to the Luss Water at Luss monitoring station ~ 17km to the northwest, indicates that the SAAR for the Proposed Scheme is approximately 3000mm. This difference means that flows from road drainage networks and within receiving watercourses are being underestimated (with associated higher dilution levels), leading to pollutant concentration levels being overestimated; though this should provide a more conservative assessment.
- Recognising that the carriageway treatment area (CTA) for Proposed Scheme drainage network 1 – as described Volume 4, Chapter 4, The Proposed Scheme - will largely be under the cover of the debris flow shelter (DFS), it is considered that this area may only receive a third of any precipitation; as such, the rainfall site used to assess the discharge from Network 1 is Keighley, which has a SAAR value of 1000mm. This theoretical level of precipitation input may be higher than realised, if so, lower precipitation inputs would increase contaminant concentration levels, due to lower dilution within drainage network. This potential elevation in contaminant levels is likely partially or wholly offset by the more conservative aspects of the process undertaken, listed above.

A19-5.4. Baseline Conditions

- A19-5.4.1. Baseline conditions of sensitive (surface water resources and water quality) receptors (including private water supplies (PWS) and watercourses) considered to be at risk of potential construction and operational impacts, because of the Proposed Scheme, are detailed Volume 4, Appendix 19.3 Road Drainage and the Water Environment, Baseline.
- A19-5.4.2. Baseline sensitivities, described below, have been determined using the importance criteria within Table A19-2.1, Volume 4, Appendix 19.2 Road Drainage and the Water Environment, Methodology.

Surface Water Resources

- A19-5.4.3. The nearest public mains water supply in proximity to the Proposed Scheme is near Arrochar, approximately 7km southeast; as such, public water supplies have been scoped out of the assessment of impacts.
- A19-5.4.4. A PWS was identified at High Glen Croe serving a single property at the head of Glencroe. This PWS is sourced from a watercourse with a catchment on the southeast aspect of Beinn Luibhean.
- A19-5.4.5. At the time of writing in August 2024, the exact location of the PWS source is unconfirmed, with a site visit to confirm the details delayed at landowner request, conservative assumptions for this PWS have been applied whilst verification is awaited. It is understood to be located downstream of the existing A83, with the location of associated infrastructure between the existing source and the supply property, also currently unconfirmed.
- A19-5.4.6. The existing A83 does not have formal treatment of surface runoff, this results in untreated over-edge runoff passing on to adjacent hillslope and entering watercourses. This includes channels upslope of the High Glen Croe property, the assumed surface water source of the PWS. As the High Glen Croe PWS serves a single property, the baseline sensitivity is assessed as medium.

Water Quality

- A19-5.4.7. The Croe Water, which is the only WFD watercourse identified with a Proposed Scheme discharge, received an overall WFD classification of Moderate (2022); as such, the sensitivity of the Croe Water is assessed as high.
- A19-5.4.8. All remaining watercourses (tributaries to the Croe Water and Kinglas Water, flowing into Loch Restil) that would receive Proposed Scheme discharges are therefore considered to have a baseline sensitivity of medium.
- A19-5.4.9. The watercourses crossed by the OMR are generally tributaries of the Croe Water, with one crossing of the Croe Water channel.

Drainage Network	Receiving Watercourse	Baseline Importance/Sensitivity
1	Croe Water (A83_015)	High
2A	Tributary of Croe Water (A83_29)	Medium
2B	Tributary of Croe Water (A83_31)	Medium
3A	Tributary of Kinglas Water	Medium
3В	Tributary of Kinglas Water (A83_34)	Medium
3C	Tributary of Kinglas Water	Medium

Table 19-5.2 Watercourse Baseline Conditions

A19-5.4.10. As per surface water resources, the existing A83 and OMR do not have formal treatment of surface runoff, this results in untreated over-edge runoff passing on to adjacent hillslope and entering watercourses.

File Name: A83AAB-AWJ-EAC-LTS_GEN-RP-LE-000296 |

A19-5.5. Proposed Scheme Drainage Design

- A19-5.5.1. Drainage of the existing A83 is 'over-the-kerb' with no provision of a formal SuDS and therefore no treatment for the removal of soluble and sedimentbound pollutants. The Proposed Scheme drainage design and strategy, including assumptions, constraints and departures from standard, are detailed within Volume 4, Chapter 4, The Proposed Scheme.
- A19-5.5.2. Carriageway runoff shall be separately managed to DFS roof, hillslope and watercourse flows, with the former being discussed in terms of treatment below. The roof drainage, intercepted hillslope and watercourse channels shall be collected and transferred downslope without mixing with potentially contaminated carriageway runoff.
- A19-5.5.3. The Proposed Scheme for A83 upgrade has six drainage networks collecting carriageway runoff (Table 19-3 and Volume 3, Figure 19-3 The Proposed Scheme and Watercourses); each consisting of permeable and impermeable areas. Once treated, routine runoff is discharged into the nearest watercourse where it is diluted and dispersed.
- A19-5.5.4. The OMR improvements shall continue to convey runoff without formal treatment to nearest surface water channel.
- A19-5.5.5. Recognising spatial and topographical constraints, the Proposed Scheme drainage networks have been designed to be compliant (so far as reasonably practicable) with statutory requirements; whereby in Scotland, "*it is generally considered that two levels of SUDS are expected by SEPA prior to discharge, and three levels may be required for particularly sensitive receptors*" (LA 113) to control and treat surface water runoff, where feasible.
- A19-5.5.6. Discussions held with SEPA (during the development of the DMRB Stage 3 design) highlighted the challenging topography surrounding the Proposed Scheme, with betterment agreed as provided by a single level of (SuDS) treatment that meets the HEWRAT 'Pass' threshold, in comparison to the currently untreated runoff generated by the existing A83. Additional treatment is

considered to introduce higher risk to the water environment, in terms of substantial earthwork requirements on steep slopes, during construction. Table 19.5-3 notes discharge locations for operational runoff from the A83.

- A19-5.5.7. These discussions with SEPA also outlined that OMR improvements were not being undertaken to meet DMRB LA 113 standards, given the temporary function of this upgraded road and intention to minimise engineering works. The OMR improvements will continue to collect and transfer runoff to nearby surface water channels, with no formal treatment installed. Due to temporary traffic use, the OMR drainage networks have not been assessed for discharge compliance with LA113 standard, but proposed works are overall deemed to be a betterment compared to existing conditions
- A19-5.5.8. The Active Travel Route incorporated into the Proposed Scheme adjacent to the B828 has a number of dedicated drainage networks (4A-4G), this function is not applicable for assessment against LA113 standard.

Table 19-5.3 Proposed A83 Drainage Networks

Drainage Network No.	SuDS	Receiving Watercourse	Outfall (Easting)	Outfall (Northing)	Network Description
1	Detention Basin	Croe Water (A83_015)	223994	705861	Gully under DFS, draining to detention basin and discharging to Croe Water
2A	Filter Drain	A83_29, Tributary of Croe Water	223469	707202	Filter drain discharging to tributary of Croe Water
2B	Filter Drain	A83_31, Tributary of Croe Water	223343	707344	Filter drain discharging to tributary of Croe Water
3A	Filter Drain	Tributary to Loch Restil	222970	707497	Filter drain discharging to tributary of Loch Restil (Kinglas Water)
3B	Filter Drain	A83_34, Tributary to Loch Restil	222977	707546	Filter drain discharging to tributary of Loch Restil (Kinglas Water)
3C	Filter Drain	Tributary to Loch Restil	222991	707682	Filter drain discharging to tributary of Loch Restil (Kinglas Water)

File Name: A83AAB-AWJ-EAC-LTS_GEN-RP-LE-000296 |

Date: December 2024

A19-5.6. Impact Assessment

- A19-5.6.1. Potential impacts (construction and operational), on surface water resources and water quality, are assessed cognisant of embedded mitigation e.g. embedded design features and compliance with good practice guidance, relevant legislation and regulations; without which, consent for the construction and operation of the Proposed Scheme could not be obtained.
- A19-5.6.2. As regards potential impacts described below, the magnitude of impact has been determined using the criteria within Table A19-2.3, Volume 4, Appendix 19.2 Road Drainage and the Water Environment, Methodology; and significance of effect has determined using the criteria within Table A19-2.4, Volume 4, Appendix 19.2 Road Drainage and the Water Environment, Methodology.

Construction Impacts

- A19-5.6.3. Impacts during construction are temporary, however they can result in permanent effects e.g. on the quality of a surface water resource, with potential implications for aquatic ecology and riparian habitats.
- A19-5.6.4. Construction impacts are attributable to the activities carried out to construct the Proposed Scheme. Typical activities include site clearance, demolition, operation of site welfare facilities, disposal of waste, storage and handling of chemicals/fuels, plant movements, site deliveries, earthworks excavations, storage of soils, asphalt and concrete works, installation and erection of structures (e.g. culverts and bridges), and discharge of construction surface runoff.
- A19-5.6.5. Silt and sediment-laden surface runoff, generated by construction activities such as soil stripping and earthworks excavations, can have a detrimental impact if allowed to enter watercourses untreated. Fine sediments can increase water turbidity and smother stream beds, affecting water quality and causing harm to fish, aquatic invertebrates and plants by interfering with feeding, respiration and spawning. The effects of sediment release can also extend considerable distances downstream.

- A19-5.6.6. During construction, pollution pathways (linkages between sources and receptors) typically include formalised temporary construction SuDS and informal uncontrolled/accidental discharges e.g. those which enter the water environment without passing through a temporary construction SuDS.
- A19-5.6.7. Furthermore, spillages of pollutants such as oils, fuels, concrete, cement/cement-wash and sewage from construction sites, storage compounds and welfare facilities can occur during construction. Oils can form a film on the surface of water and can coat organisms, blocking respiration, photosynthesis and feeding. Biodegradation of oils in aquatic systems can further lead to oxygen depletion; and many hydrocarbons are toxic, persistent and bioaccumulate in the environment i.e. they build-up in the body tissue both directly and from feeding on other contaminated organisms. Concrete and cement are also highly alkaline and harmful to aquatic organisms if the pH of receiving waters is altered.
- A19-5.6.8. Construction impacts on PWS, typically include impacts on the quality and quantity of a resource where construction activities have the potential to affect sources i.e. points of abstraction and supply infrastructure i.e. pipelines, or both. Furthermore, construction activities such as earthworks excavations and dewatering, can have temporary and permanent impacts on surface resources, where these are hydrologically dependent on groundwater flows; whilst pollution associated with construction contaminants e.g. sediments, chemicals/fuels, can also have temporary and permanent impacts on the quality of a PWS source.

Embedded Mitigation

A19-5.6.9. Embedded mitigation is the individual measures adopted to avoid, minimise, restore or offset potentially adverse impacts on surface water resources and water quality; and is a key consideration at all life-stages of a project including throughout design, construction and operation.

- A19-5.6.10. Earthworks for the Proposed Scheme cross steep and unstable slopes, over an extended construction timeframe, in an area subject to intense and prolonged rainfall events, with effective sediment management is a key issue.
- A19-5.6.11. During construction, the contractor shall be responsible for identifying and locating all assets associated with the High Glen Croe PWS prior to construction; and for protecting the quality, quantity and continuity of the PWS during this period.
- A19-5.6.12. A full list of embedded mitigation measures is provided in Chapter 19, Road Drainage and the Water Environment (Table 19-1).

Surface Water Resources

- A19-5.6.13. Proposed Scheme construction activities could result in temporary impacts on the quality and quantity associated with the High Glen Croe PWS, taking a precautionary approach (based on assumptions and unconfirmed supply details) at the time of writing.
- A19-5.6.14. Cognisant of embedded mitigation, the magnitude of potential impacts on the High Glen Croe PWS (medium sensitivity) during construction is assessed as moderate adverse, with a moderate adverse (significant) effect.

Water Quality

- A19-5.6.15. Proposed Scheme construction activities could result in temporary or permanent impacts on watercourses and the wider Croe Water catchment, with particular concern in relation to sediment management on the tributary channels of the Croe Water which are directly crossed by the A83 mainline where the planned debris flow shelter shall be installed.
- A19-5.6.16. Loch Restil is downstream of the Kinglas Water tributary channels that are crossed in the area north of the R&BT Car Park, these locations have less complicated earthworks (outwith DFS zone), limited to carriageway and improvements.

File Name: A83AAB-AWJ-EAC-LTS_GEN-RP-LE-000296 |

- A19-5.6.17. Cognisant of embedded mitigation, the magnitude of potential impacts on the Croe Water (high sensitivity) during construction is assessed as moderate adverse, with a large adverse (significant) effect.
- A19-5.6.18. Taking account of embedded mitigation, the magnitude of potential impacts on the tributary watercourses of the Croe Water (medium sensitivity) during construction is assessed as major adverse, with a moderate adverse (significant) effect.
- A19-5.6.19. With embedded mitigation, the magnitude of potential impacts on the tributary watercourses of the Kinglas Water (medium sensitivity) during construction is assessed as minor adverse, with a slight adverse (non-significant) effect.
- A19-5.6.20. Applying embedded mitigation to the inflowing tributary watercourses within the upper Kinglas Water catchment, the magnitude of potential impacts on Loch Restil (high sensitivity) during construction is assessed as minor adverse, with a moderate adverse (significant) effect.

Operational Impacts

A19-5.6.21. Operational effects relate to ongoing use of the Proposed Scheme, with key concerns relating to routine runoff and accidental spillages by vehicles on the A83 carriageway, with the OMR Improvements not designed to the LA 113 standard given their temporary function and minimal interventions planned.

Embedded Mitigation

A19-5.6.22. As for construction, embedded mitigation is the individual measures adopted to avoid, minimise, restore or offset potentially adverse impacts on surface water resources and water quality. During operation, embedded mitigation is considered to encompass the SuDS measures that have been incorporated into the design of the Proposed Scheme (A83 mainline) to avoid adverse impacts and effects on water quality from routine runoff and accidental spillages.

Surface Water Resources

- A19-5.6.23. As for construction, operational activities could also result in temporary/permanent impacts on the quality and quantity associated with the High Glen Croe PWS. With filter drains providing treatment as part of the Proposed Scheme design, this will improve the quality of runoff from the A83 carriageway. However, the drainage design for Networks 2A and 2B shall outfall to discrete locations including channels upslope of the assumed source for the High Glen Croe PWS. This runoff may intermittently have elevated levels of contaminants associated with A83 road operations and maintenance activities.
- A19-5.6.24. Cognisant of embedded mitigation, the magnitude of effect on High Glen Croe PWS (medium sensitivity) is assessed as minor adverse, with a slight adverse (non-significant) effect.

Water Quality

- A19-5.6.25. The assessment of routine runoff to surface waters from the A83 carriageway has been undertaken using the three-step HEWRAT method described Volume 3, Appendix 19.3 Road Drainage and the Water Environment Baseline. This establishes that, if the toxicity levels, in respect of Copper/Zinc yield an assessment 'pass' at any step relative to the respective environmental quality standards (EQS), no further assessment is required. In cases where a ''failure'' has been predicted during Step 2, mitigation has been applied at Step 3 and if necessary, Step 3 is repeated with 'enhanced' treatment options until all failures are eliminated.
- A19-5.6.26. The assessment is comprised of an assessment of individual outfalls and a cumulative assessment any outfalls within 100 m.
- A19-5.6.27. Results from the HEWRAT assessment of routine runoff are summarised Table 19-5.4 and screenshots images of assessment outputs are provided Section A19-5.10. In summary, all individual and cumulative outfalls pass the relevant HEWRAT assessment criteria for acute and chronic impacts; demonstrating the

positive effect Proposed Scheme SuDS will provide, in comparison with currently untreated discharges.

- A19-5.6.28. Cognisant of embedded mitigation and consideration of catchment-wide effects, the potential magnitude of impact from routine runoff on the Croe Water (high sensitivity) is assessed as moderate beneficial, assessed as a moderate beneficial (significant) effect. For the tributary watercourses of the Croe Water and Kinglas Water (both medium sensitivity) as well as for Loch Restil (high sensitivity) taking account of both individual and cumulative assessments, there is a magnitude of impact of minor beneficial with a slight beneficial (non-significant) effect.
- A19-5.6.29. The accidental spillage assessment method (Volume 3, Appendix 19.3 Road Drainage and the Water Environment Baseline) 'estimates the risk that there will be an incident causing the spillage of a potentially polluting substance somewhere on the length of road being assessed. It then calculates the risk, assuming a spillage has occurred, that the pollutant will reach and impact on the receiving watercourse or groundwater'. Furthermore, DMRB LA 113 also states the following in relation to the level of assessed risk:
 - for risk of a serious pollution incident to be acceptable the calculated annual probability of such an incident shall not be greater than 1% and
 - for risk of a serious pollution incident to be acceptable the calculated annual probability shall not be greater than 0.5% where spillage has the potential to affect a: 1) SSSI; 2) source protection zones (SPZ); 3) protected area; 4) drinking water supply; or 5) commercial activity abstracting from the watercourse.
- A19-5.6.30. Results from the assessment of accidental spillages from the A83 carriageway are summarised Table 19-5.5 and screenshots images of assessment outputs are provided SectionA19-5.10. In summary, all proposed A83 outfalls returned an accidental spillage percentage (ASP) substantially below 0.5% (200 year return period), which is considered the threshold for having a potential effect on a designated/protected site, e.g. Loch Restil, within Beinn an Lochain SSSI.

A19-5.6.31. Cognisant of embedded mitigation and consideration of catchment-wide effects the potential magnitude of impact from accidental spillage, with these measures in place and A83 carriageway drainage directed via SuDS, the impact on the Croe Water (high sensitivity) is assessed as minor beneficial, with a slight beneficial (non-significant) effect. For tributary watercourses of the Croe Water and Kinglas Water (both medium sensitivity) and for Loch Restil (high sensitivity) there is an equivalent magnitude of impact of minor beneficial, all with a slight beneficial (non-significant) effect.

Table 19-5.4 HEWRAT (Step 3) Routine Runoff Assessment

Drainage Network	Soluble (EQS) Annual Average Dissolved Copper - Value (µg/l)	Soluble (EQS) Annual Average Dissolved Copper - Pass/Fail	Annual Average Dissolved Zinc - Value (µg/l)	Annual Average Dissolved Zinc - Value (µg/l) – Pass/Fail	Acute Impact - River Toxicity Test Pass/Fail (Copper)	Acute Impact - River Toxicity Test Pass/Fail (Zinc)	Sediment (Chronic) Impacts Assessment	Low Flow Value (m3/s)	Deposition Index	Magnitude of Impact	Significance of Effect
1	0.25	Pass	0.89	Pass	Pass	Pass	Pass	0.14	n/a	Moderate beneficial	Moderate beneficial
2A	0.27	Pass	0.45	Pass	Pass	Pass	Alert. D/S Structure	0.20	n/a	Minor beneficial	Slight beneficial
2B	0.89	Pass	0.64	Pass	Pass	Pass	Alert. D/S Structure	0.23	n/a	Minor beneficial	Slight beneficial
ЗА	0.32	Pass	0.53	Pass	Pass	Pass	Alert. Protected Area & D/S Structure	0.19	n/a	Minor beneficial	Slight beneficial
3В	0.10	Pass	0.16	Pass	Pass	Pass	Alert. Protected Area & D/S Structure	0.19	n/a	Minor beneficial	Slight beneficial
3C	0.15	Pass	0.25	Pass	Pass	Pass	Alert. Protected Area & D/S Structure	0.09	2	Minor beneficial	Slight beneficial
3A & 3B Cumulat.	0.38	Pass	0.63	Pass	Pass	Pass	Alert. Protected Area & D/S Structure	0.19	n/a	Minor beneficial	Slight beneficial

Table 19-5.5 HEWRAT Accidental Spillages Risk Assessment

Drainage Network No.	Receiving Watercourse	Accidental Spillage Percentage %	Return Period (Years) without pollution reduction	Return Period (Years) with any applicable pollution reduction from SuDS	Magnitude of Impact	Significance of Effect
1	Croe Water	0.0003	3,192	3,192	Minor beneficial	Slight beneficial
2A	Tributary of Croe Water	<0.0001	36,660	61,100	Minor beneficial	Slight beneficial
2B	Tributary of Croe Water	<0.0001	39,059	65,098	Minor beneficial	Slight beneficial
3A	Tributary to Loch Restil	<0.0001	41,692	69,486	Minor beneficial	Slight beneficial
3B	Tributary to Loch Restil	<0.0001	195,519	325,865	Minor beneficial	Slight beneficial
3C	Tributary to Loch Restil	<0.0001	130,346	217,244	Minor beneficial	Slight beneficial

File Name: A83AAB-AWJ-EAC-LTS_GEN-RP-LE-000296 |

Date: December 2024

A19-5.7. Mitigation

- A19-5.7.1. Embedded mitigation is considered at the start of the impact assessment, with the effects of additional specific mitigation measures, to address key challenges in relation to the water environment, reported below.
- A19-5.7.2. Specific mitigation measures are additional measures to minimise, restore or offset potential impacts on surface water resources and water quality which cannot otherwise be addressed via embedded mitigation measures.
- A19-5.7.3. Specific mitigation will encompass environmental commitments unique to individual receptors.

Specific Mitigation (Construction)

- A19-5.7.4. During Construction, adherence with environmental good practice including compliance with (but not limited to): guidance for pollution prevention (GPPs); SEPA guidance and CAR regulatory regimes including construction runoff permits; discharge of planning conditions; and compliance with relevant construction environmental management plans (CEMP) and pollution prevention plans (PPP) will be made.
- A19-5.7.5. As the location of the A83 mainline is spatially constrained by steep and unstable topography either side of the existing A83 carriageway, limited space is available to accommodate local construction SuDS to manage sediment. Given these very challenging and unusual working conditions, a series of generally escalating measures have been described below, with requirements dependent on further GI information, detailed design and local environmental performance during construction. All measures would be subject to preapproval from SEPA and other relevant regulatory bodies and written into the Construction Environmental Management Plan by the Appointed Contractor:
 - It will be necessary to suspend construction works during periods of elevated debris flow risk in all areas that have to potential to be impacted by such flow events.

- Agreed expectations of thresholds for total suspended solids (TSS) as a maximum sediment level allowable for discharge to surface waters, furthermore, consideration of threshold levels for in-channel sediment levels taking account of baseline conditions (i.e. sediment uplift from the development).
- Temporary interception, upstream of the construction zone, with overpumping and diversion to adjacent watercourse(s) will reduce the incoming flows from hillslopes and channels. Channel flows would be reinstated following completion of local works including downstream scour and bank protection.
- Construction of temporary settlement basins, where topography and earthwork programming allow, to provide retention of runoff from disturbed areas prior to entering watercourse channels, these shall not be positioned within areas susceptible to flood risk, avoiding 200 Annual Exceedance Period with climate change (200 AEP + CC) zones.
- Where settlement basins are not feasible, mechanical settlement devices shall be considered to enable treatment for local discharge. These portable devices would be deployed at appropriate locations to reduce construction sedimentation risk as the construction programme progresses.
- Construction of other source control methods, such as sediment fences and straw bale filters (downslope of disturbed areas and stockpiles) as required.
- To achieve sediment control, pre-approval from SEPA shall be sought for application of coagulants and flocculants as a contingency measure to promptly aid settlement of suspended solids. In accordance with pre-requisite sediment conditions and methodologies; including chemical type, dosage level and location.
- Sediment control directly within tributary channels may be appropriate as a further contingency measure, should excess sediment entrainment linked to construction activities occur or be predicted. Ongoing GI and detailed design inputs will inform this requirement, to supplement other

sediment control measures. This shall involve the installation of temporary settlement ponds or other engineering interventions to tributaries of Croe Water. These would be positioned on slopes with shallower gradient, either as online (in-channel) or offline (adjacent to channel) features, with the intention to reduce sediment load in minor channels prior to their confluence with the Croe Water. Pre-approval from SEPA for such interventions would enable site preparation ahead of requirement (preferred approach) or initiation of a prompt response, with associated design details provided, taking account of local channel characteristics and constraints (including groundwater level and with avoidance of flood risk 200 AEP + CC zones) to determine location, footprint, maintenance plan and reinstatement method.

Specific Mitigation (Operation)

- A19-5.7.6. None identified for the OMR improvements.
- A19-5.7.7. During operation, should sediment and/or particulates require cleansing from the covered A83 carriageway within the DFS, due to lack of washing effect from reduced precipitation, this will be collected directly from the road surface primarily for safety concerns This process will reduce sediment input into the drainage network (which shall improve environmental performance) but shall introduce the requirement for appropriate waste management approvals prior to collection and disposal.

A19-5.8. Residual Effects

A19-5.8.1. Residual effects (construction and operational) on surface water resources and water quality are assessed below, cognisant of the additional (specific) mitigation identified.

Construction Effects

Surface Water Resources

A19-5.8.2. Based on the Contractor maintaining supply continuity during construction via an agreed temporary or permanent alternative supply source to High Glen

File Name: A83AAB-AWJ-EAC-LTS_GEN-RP-LE-000296 |

Croe (medium sensitivity), there would be no loss of water supply during construction. This new source shall not receive potentially contaminated runoff, a betterment over the baseline status.

A19-5.8.3. As such, the residual magnitude of residual effects is assessed as minor beneficial, with residual effect is assessed as slight beneficial (non-significant).

Water Quality

- A19-5.8.4. With additional mitigation applied, management of sediment is considered to remain challenging on this complex construction site, with limited available space for settlement measures and an escalating series of interventions.
- A19-5.8.5. Taking account of specific mitigation items for construction, the magnitude of potential impacts to water quality on the Croe Water (high sensitivity) during construction is reduced to minor adverse, with the significance of residual effects reduced to moderate adverse (significant). The magnitude of residual impacts on the water quality of the tributaries of the Croe Water (medium sensitivity) during construction is reduced to moderate adverse, with the significance of residual effects remaining as moderate adverse, with the significance of residual effects remaining as moderate adverse (significant). The tributaries of the Kinglas Water (medium sensitivity) and Loch Restil (high sensitivity) are considered to remain at minor adverse magnitude, with a slight adverse (non-significant) effect applied to both sets of receptors from the specific mitigation applied.

Operational Effects

Surface Water Resources

- A19-5.8.6. As per construction, based on the Contractor maintaining supply continuity via an agreed permanent alternative supply source to High Glen Croe PWS (medium sensitivity), there would be no loss of water supply during operation.
- A19-5.8.7. As this new source would not receive road drainage or associated contaminants from Proposed Scheme surface runoff originating from the A83, this is a long-term betterment over the baseline status; as such, the operational (i.e. long-term) residual magnitude of effects is assessed as

File Name: A83AAB-AWJ-EAC-LTS_GEN-RP-LE-000296 |

moderate beneficial; and the significance of effect is assessed as moderate beneficial (significant).

Water Quality

- A19-5.8.8. In respect of routine runoff from the A83 carriageway (with no specific mitigation identified, beyond the SuDS embedded in the design), the residual operational effects on the Croe Water (high sensitivity) are unchanged, with a magnitude of impact of moderate beneficial and a moderate beneficial (significant) effect. Likewise, residual operational effects on the Croe Water and Loch Restil tributaries (medium sensitivity) are unchanged with a magnitude of impact of minor beneficial and a slight beneficial (non-significant) effect.
- A19-5.8.9. In respect of accidental spillages (with no specific mitigation identified, beyond the SuDS embedded in the design), the residual operational effects on the Croe Water (high sensitivity) from the A83 carriageway are also unchanged, with a magnitude of impact of minor beneficial and a slight beneficial (nonsignificant) effect. Likewise, residual operational effects on the Croe Water and Loch Restil tributaries (medium sensitivity) are unchanged, with a magnitude of impact of minor beneficial and a slight beneficial (nonsignificant) effect.

A19-5.9. Conclusions

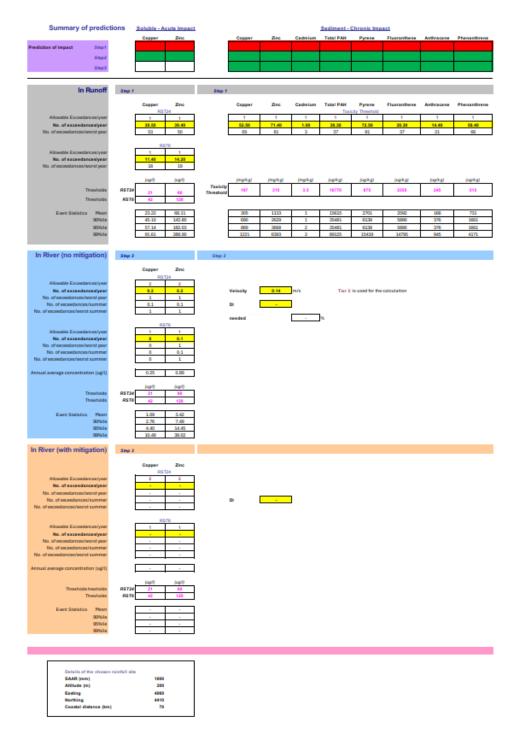
- A19-5.9.1. The status of the water environment adjacent to the existing A83 is affected by an absence of runoff treatment, with uncontrolled over-the-kerb discharges to adjacent hillslopes and waterbodies including the Croe Water, tributaries of both the Croe Water and Kinglas Water, Loch Restil, plus the High Glen Croe PWS.
- A19-5.9.2. Construction of the Proposed Scheme would be required to take place within a site that is spatially and topographically constrained, with steep ground above and below the carriageway, likely to result in temporary and significant adverse effects. To minimise these, the contractor shall be required to follow good environmental practice (embedded mitigation) and to implement

File Name: A83AAB-AWJ-EAC-LTS_GEN-RP-LE-000296 |

additional mitigation (including CEMP and further sediment management measures) to protect sensitive receptors from elevated levels of erosion and/or sedimentation, with contingency planning covering an extended period of earthworks.

- A19-5.9.3. Residual construction effects for water resources (High Glen Croe PWS) are assessed as slight beneficial (non-significant) on the basis of provision of an alternative temporary or permanent supply source. Residual construction effects for water quality are assessed as moderate adverse (significant), applying the precautionary principle and with recognition of the challenging terrain in managing sediment for the Proposed Development.
- A19-5.9.4. The operation of the Proposed Scheme would introduce SuDS measures to intercept, attenuate and treat surface runoff from the A83 carriageway prior to it being discharged into the water environment. The provision of SuDS will reduce sediment, sediment-bound pollutants and soluble metal contaminants reaching receiving waters improving the buffering capacity of watercourses. Furthermore, the installed SuDS provide attenuation, treatment and a degree of containment for contaminants released in the unlikely event of an accidental spillage.
- A19-5.9.5. Residual operational effects for water resources are assessed as moderate beneficial (significant) in relation to High Glen Croe PWS, based on provision of a permanent alternative supply source. A residual moderate beneficial (significant) effect has also been assessed for the Croe Water in relation to permanent improvement in water quality of the routine runoff discharged. Residual slight beneficial (non-significant) effects were assessed for tributary channels to the Croe Water, Kinglas Water and Loch Restil for both routine runoff and in relation to accidental spillages across all receptors.

A19-5.10. HEWRAT Assessment Output Screenshot Images


Image 19-5.1 Network 1 HEWRAT Interface Assessment Results

highways england	Highways Engl	and Water Risk Assessment To	ool		Version 2.0.4 June 2	019			
	Soluble							Sediment - C	hronic Impact
	EQS - Annual Average	Concentration			Acute Im	pact			
	Copper	Zinc						Pa	55
	0.25	0.89	ug/l		Copper	Zinc			
Step 2								diment deposition for this	
					Pass	Pass		cumulating? No	0.14 Low flow Vel m/s
Step 3	-	-	ug/l				Ext	tensive? No	- Deposition Index
Step 3									
Road number		A83			HE Area / DBFO r	number			
Assessment type		Non-cumulative assessme	nt (single outf	all)					•
OS grid reference of assessme		Easting				Northing			
OS grid reference of outfall str	ucture (m)	Easting				Northing			
Outfall number		Network 1 (Exc DFS)			List of outfalls in o	cumulative			
Receiving watercourse		Croe Water			assessment	ĺ			
EA receiving water Detailed Ri	ver Network ID	N∕A			Assessor and affil			CP (AWJV)	
Date of assessment		07/08/2024			Version of assess	ment		2.0.6	
Notes		Assessment to reflect the	Network 1 bas	sin shape re	development and	change in the char	acter area f	or LTS Network 1	
		1							
Step 1 Runoff Quality	AADT >10,000 a	rd <50.000							
		nd <50,000 👻	Climatic re	aion Colder	Wet 🚽	Rainfall site	Keigl	hley (SAAR 1000mm)	-
	AADT	na <50,000	Climatic re	egion Colder	Wet 🗸	Rainfall site	Keigl	hley (SAAR 1000mm)	•
Step 2 River Impacts				.gion		Rainfall site	Keigl	hley (SAAR 1000mm)	
Step 2 River Impacts	Annual Q ₉₅ river flow (m		0.005	.gion	wet	Rainfall site	Keigl	hley (SAAR 1000mm)	-
(Enter zero in Annual Q ₉₅		3/s)		.gion			Keigl	hley (SAAR 1000mm)	
(Enter zero in Annual Q ₉₅ river flow box to assess	Annual Q ₉₅ river flow (m	3/s) drained (ha)	0.005	.gion	hwater EQS limits: Bioavailable dissol	ved copper (µg/l)	Keigl	1	
(Enter zero in Annual Q ₉₅	Annual Q ₉₅ river flow (m	3/s) drained (ha)	0.005 1.508 1.815	.gion	hwater EQS limits:	ved copper (µg/l)	Keigl		
(Enter zero in Annual Q ₉₅ river flow box to assess	Annual Q ₉₅ river flow (m	3/s) drained (ha)	0.005	Fres	hwater EQS limits: Bioavailable dissol Bioavailable dissol	ved copper (µg/l)		1 D 10.9 D	v No v
(Enter zero in Annual Q ₉₅ river flow box to assess Step 1 runoff quality only)	Annual Q ₆₅ river flow (m Impermeable road area Permeable area draining Base Flow Index (BFI)	² /5) drained (ha) g to outfali (ha)	0.005 1.508 1.815 0.242	Fresi	hwater EQS limits: Bioavailable dissol Bioavailable dissol lischarge in or within	ved copper (μg/l) ved zinc (μg/l) 1 km upstream of a	protected site	1 0.9 0 for conservation?	
(Enter zero in Annual Q ₉₅ river flow box to assess	Annual Q ₉₅ river flow (m Impermeable road area Permeable area draining	3/s) drained (ha)	0.005 1.508 1.815 0.242	Fresi	hwater EQS limits: Bioavailable dissol Bioavailable dissol	ved copper (μg/l) ved zinc (μg/l) 1 km upstream of a	protected site	1 D 10.9 D	
(Enter zero in Annual Q ₉₅ river flow box to assess Step 1 runoff quality only)	Annual Q _{as} river flow (m Impermeable road area Permeable area draining Base Flow Index (BFI) Water hardness	² /5) drained (ha) g to outfali (ha)	0.005 1.508 1.815 0.242	Fresi	water EQS limits: Bioavailable dissol Bioavailable dissol ischarge in or within or dissolved coppe	ved copper (µg/l) ved zinc (µg/l) 1 km upstream of a r only Ambient I	protected site	1 0.9 0 for conservation?	
(Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality only)	Annual Q _{as} river flow (m Impermeable road area Permeable area draining Base Flow Index (BFI) Water hardness Is there a downstream s	³ /5) drained (ha) g to outfall (ha) Low = <50mg CaCO3/I tructure, lake, pond or canal that reduc	0.005 1.508 1.815 0.242	Fresi	water EQS limits: Bioavailable dissol Bioavailable dissol ischarge in or within or dissolved coppe	ved copper (µg/l) ved zinc (µg/l) 1 km upstream of a r only Ambient I	protected site	1 0 10.9 0 for conservation? oncentration (µg/l)	
(Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality only)	Annual Q _{as} river flow (m Impermeable road area Permeable area draining Base Flow Index (BFI) Water hardness Is there a downstream s	³ /S) drained (ha) g to outfall (ha) Low = <50mg CaCO3/I	0.005 1.508 1.815 0.242	Fresi	water EQS limits: Bioavailable dissol Bioavailable dissol ischarge in or within or dissolved coppe	ved copper (µg/l) ved zinc (µg/l) 1 km upstream of a r only Ambient I	protected site	1 0 10.9 0 for conservation? oncentration (µg/l)	
(Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality only)	Annual Q _{as} river flow (m Impermeable road area Permeable area draining Base Flow Index (BFI) Water hardness Is there a downstream s	³ /5) drained (ha) g to outfall (ha) Low = <50mg CaCO3/I tructure, lake, pond or canal that reduce ed river width (m)	0.005 1.508 1.815 0.242	Fresi	hwater EQS limits: Bioavailable dissol Bioavailable dissol iischarge in or within or dissolved coppe If the point of dischar	ved copper (µg/l) ved zinc (µg/l) 11 km upstream of a r only Ambient I ge?	protected site	1 □ 10.9 □ for conservation? oncentration (µg/l) No □	
(Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality only)	Annual Q _{as} river flow (m Impermeable road area Permeable area draining Base Flow Index (BFI) Water hardness Is there a downstream s C Tier 1 Estimat	³ /5) drained (ha) g to outfall (ha) Low = <50mg CaCO3/I tructure, lake, pond or canal that reduce ed river width (m)	0.005 1.508 1.815 0.242 Ces the velocity 3	Fresi	hwater EQS limits: Bioavailable dissol Bioavailable dissol iischarge in or within or dissolved coppe If the point of dischar	ved copper (µg/l) ved zinc (µg/l) 11 km upstream of a r only Ambient I ge?	protected site	1 □ 10.9 □ for conservation? oncentration (µg/l) No □	No - 0 0
(Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality only) For dissolved zinc only For sediment impact only	Annual Q _{as} river flow (m Impermeable road area Permeable area draining Base Flow Index (BFI) Water hardness Is there a downstream s C Tier 1 Estimat	³ /5) drained (ha) g to outfall (ha) Low = <50mg CaCO3/I tructure, lake, pond or canal that reduce ed river width (m)	0.005 1.508 1.815 0.242 Ces the velocity 3	Fresi	water EQS limits: Bioavailable dissol Bioavailable dissol iischarge in or within or dissolved coppe f the point of dischar	ved copper (µg/l) ved zinc (µg/l) 1 km upstream of a r only Ambient I ge? Side	protected site background co slope (m/m)	1 □ 10.9 □ for conservation? oncentration (µg/l) No □	No - 0 0
(Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality only)	Annual Q _{as} river flow (m Impermeable road area Permeable area draining Base Flow Index (BFI) Water hardness Is there a downstream s C Tier 1 Estimat	³ /5) drained (ha) g to outfall (ha) Low = <50mg CaCO3/I tructure, lake, pond or canal that reduce ed river width (m)	0.005 1.508 1.815 0.242 Ces the velocity 3	Fres	water EQS limits: Bioavailable dissolv Bioavailable dissolv iischarge in or within or dissolved coppe If the point of dischar	ved copper (µg/l) ved zinc (µg/l) 1 km upstream of a r only Ambient I ge? Side	protected site packground co slope (m/m)	1 □ 10.9 □ for conservation? □ oncentration (µg/l) No □ 0.5 Long =	No - 0 0
(Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality only) For dissolved zinc only For sediment impact only	Annual Q _{as} river flow (m Impermeable road area Permeable area draining Base Flow Index (BFI) Water hardness Is there a downstream s C Tier 1 Estimat	² /S) drained (ha) g to outfall (ha) Low = <50mg CaCO3/I tructure, lake, pond or canal that reduce ed river width (m) tth (m)	0.005 1.508 1.815 0.242 Ces the velocity 3	Fres	water EQS limits: Bioavailable dissol Bioavailable dissol ischarge in or within or dissolved coppe of the point of dischar 0.03	ved copper (µg/l) ved zinc (µg/l) 1 km upstream of a r only Ambient I ge? Slide Estimated effectivene	protected site packground co slope (m/m)	1 □ 10.0 □ for conservation? oncentration (µg/l) No □ 0.5 Long : attlement of	No - 0 0
(Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality only) For dissolved zinc only For sediment impact only	Annual Q _{as} river flow (m Impermeable road area Permeable area draining Base Flow Index (BFI) Water hardness Is there a downstream s C Tier 1 Estimat	³ /5) drained (ha) g to outfall (ha) Low = <50mg CaCO3/I tructure, lake, pond or canal that reduce ed river width (m)	0.005 1.508 1.815 0.242 Ces the velocity 3	Fres	water EQS limits: Bioavailable dissol Bioavailable dissol ischarge in or within or dissolved coppe of the point of dischar 0.03	ved copper (µg/l) ved zinc (µg/l) 1 km upstream of a r only Ambient I ge? Side	protected site packground co slope (m/m)	1 □ 10.9 □ for conservation? □ oncentration (µg/l) No □ 0.5 Long =	No - 0 0
(Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality only) For dissolved zinc only For sediment impact only	Annual Q _{as} river flow (m Impermeable road area Permeable area draining Base Flow Index (BFI) Water hardness Is there a downstream s C Tier 1 Estimat	² /S) drained (ha) g to outfall (ha) Low = <50mg CaCO3/I tructure, lake, pond or canal that reduce ed river width (m) tth (m)	0.005 1.508 1.815 0.242 Ces the velocity 3	Fres	water EQS limits: Bioavailable dissolv Bioavailable dissolv ischarge in or within or dissolved coppe of the point of dischar 0.03	ved copper (µg/l) ved zinc (µg/l) 1 km upstream of a r only Ambient I ge? Slide Estimated effectivene	protected site packground co slope (m/m)	1 □ 10.0 □ for conservation? oncentration (µg/l) No □ 0.5 Long : attlement of	No - 0 0
(Enter zero in Annual Q _{as} river flow box to assess Step 1 runoff quality only) For dissolved zinc only For sediment impact only Step 3 Mitigation	Annual Q _{as} river flow (m Impermeable road area Permeable area draining Base Flow Index (BFI) Water hardness Is there a downstream s C Tier 1 Estimat	^{2/} S) drained (ha) g to outfall (ha) Low = <50mg CaCO3/1 tructure, lake, pond or canal that reduced ed river width (m) tth (m) Brief description	0.005 1.508 1.815 0.242 Ces the velocity 3	Fresi	water EQS limits: Bioavailable dissol Bioavailable dissol ischarge in or within or dissolved coppe of the point of dischar 0.03	ved copper (µg/l) ved zinc (µg/l) 1 km upstream of a r only Ambient l ge? Slide Stimated effectivene Atteruation for solub	siope (m/m)	1 □ 10.0 □ for conservation? oncentration (µg/l) No ▼ 0.5 Long : ettlement of jiments (%)	No - 0 0

Image 19-5.2 Network 1 HEWRAT Detailed Assessment Results

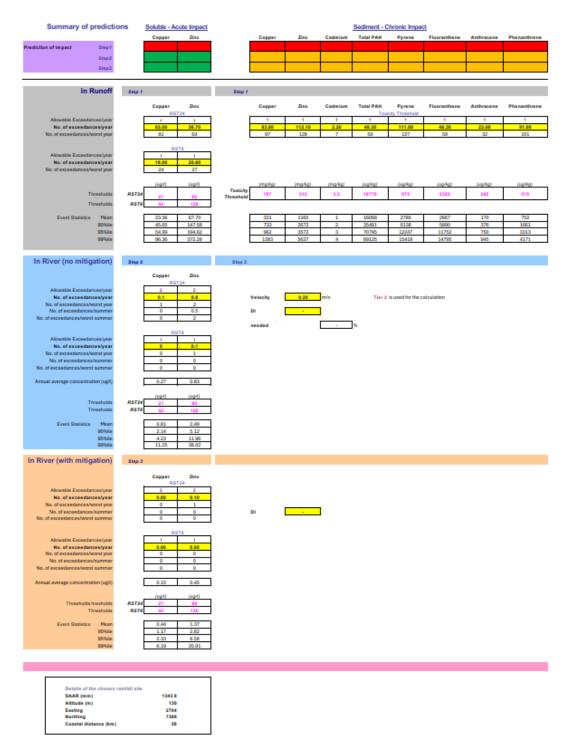


Image 19-5.3 Network 2A HEWRAT Interface Assessment Results

highways england	Highways Engla	and Water Risk Assessment Too	1		Version 2.0.4 June 20	19			
		Soluble						Sediment	- Chronic Impact
	Acute Impact								
	Copper						Alert. E	D/S Structure.	
	0.27	0.83	ug/l		Copper	Zinc	_		
Step 2					Pass	Pass		Sediment deposition for t Accumulating? No	0.20 Low flow Vel m/s
	0.15	0.45	ug/l		F 455	F 455		Extensive? No	- Deposition Index
Step 3			-9-				-		
Road number		A83			HE Area / DBFO n	umb e s			
Assessment type		Non-cumulative assessment	(single outfr		HE Area / DBFO II	umber			
OS grid reference of assessme	nt point (m)	Easting 223469	(single outla	111)		Northing	707202		<u> </u>
OS grid reference of outfall stru		Easting 223469				Northing	707202		
Outfall number	iciule (III)				List of outfalls in c		10/202		
		Network 2A			assessment	umulative			
Receiving watercourse	Net of the	A83_29				- P			
EA receiving water Detailed Riv	er Network ID				Assessor and affilia			CP (AWJV)	
Date of assessment		30/05/2024			Version of assessr			2.0.5	
Notes		Network 2A drains in to a sm	all channel.	Assumes the	at 100 % length C	TA treated via fil	lter drain.		
Step 1 Runoff Quality									
Step 1 Runon Quanty	AADT >10,000 ar	id <50,000 ▼	Climatic re	gion Colder \	Vet 👻	Rainfall site		Ardtalnaig (SAAR 1343.9mm	1) v
Step 2 River Impacts	Annual Qas river flow (m ³	/s)	0.0005	Fresh	water EQS limits:				
			0.194						
(Enter zero in Annual Q ₉₅ river flow box to assess	Impermeable road area	frained (ha)	0.194		Bioavailable dissolv	ed copper (µg/l)		1 D	
Step 1 runoff quality only)	Permeable area draining	to outfall (ha)	0.049		Bioavailable dissolv	ed zinc (µg/l)		10.9 D	
			0.241						
	Base Flow Index (BFI)		0.241	is the d	scharge in or within	1 km upstream of a	a protected	site for conservation?	No 🔻 🖻
E	Water hardness	Low = <50mg CaCO3/l	-	-					0
For dissolved zinc only	water hardness	Low - soong caccoan	<u> </u>	E FO	r dissolved copper	only Ambient	t backgrour	nd concentration (µg/I)	
For sediment impact only	le thoro a downstroam st	ructure, lake, pond or canal that reduces	the velocity v	within 100m of	the point of dischar	102		Yes 👻	
Tor acument impact only	is there a downstream si	ructure, lake, pond of canal that reduces	s the velocity v		the point of discharg	je :			
	Tier 1 Estimate	ed river width (m)	1						
	Tier 2 Bed wid	th (m)	1.5	Manning's n	0.03	Sid	le slope (m/	m) 0.1 Lo	ng slope (m/m) 0.1
	C Her 2 Ded wid			Manning 5 fr		010	le slope (iii/		
Step 3 Mitigation					E	stimated effectiven	less		
						Attenuation for solu		Settlement of	
		Brief description		s	lubles (%) rest	ricted discharge ra	ate (l/s)	sediments (%)	
Evision and a second								0	
Existing measures Proposed measures	None	11 1 OTA 104 111		45		restriction			
	Filter Drain, Assumes 100% f	ili legnth GTA.45% solubles.		45	No	restriction .		60	

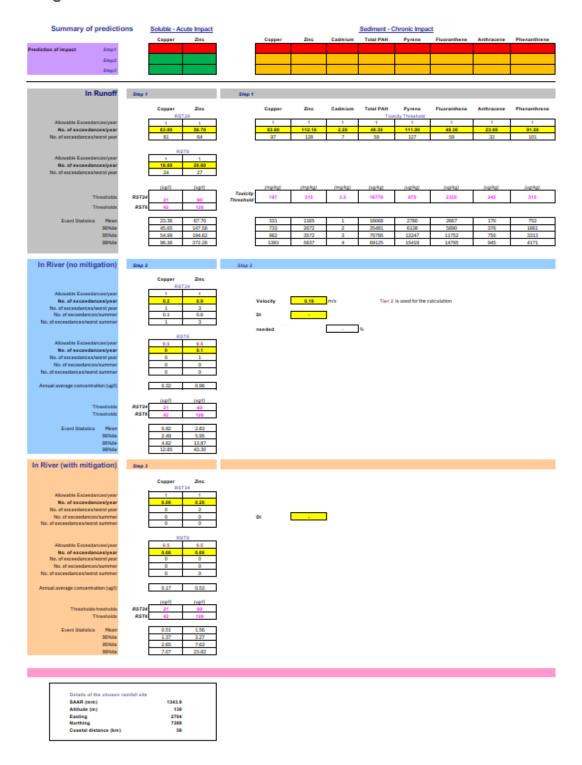
Image 19-5.4 Network 2A HEWRAT Detailed Assessment Results



Image 19-5.5 Network 2B HEWRAT Interface Assessment Results

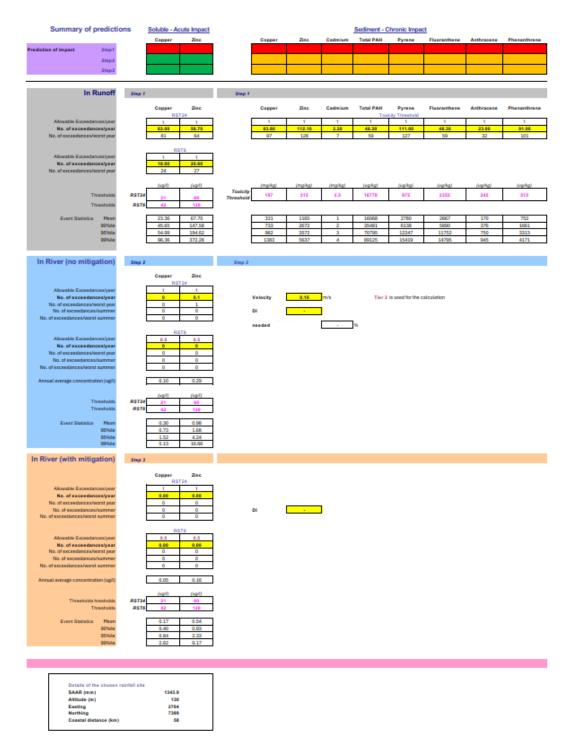
highways england	Highways Engl	and Water Risk Assessment Too	bl		Version 2.0.4 June 20	19			
		Soluble						Sediment - C	hronic Impact
	EQS - Annual Average Concentration Acute Impact Copper Zinc 0.83 1.16 Ug1				Alert. D/S Structure.				
Step 2	0.70	0.64			Pass	Pass	1	Sediment deposition for this s Accumulating? No	0.23 Low flow Vel m/s
Step 3	0.70	0.64	ug/l					Extensive? No	- Deposition Index
Road number		A83			HE Area / DBFO n	umber			
Assessment type		Non-cumulative assessment	(single outfa	II)					-
OS grid reference of assessme	ent point (m)	Easting 223343				Northing	707344		
OS grid reference of outfall str	ucture (m)	Easting 223343				Northing	707344		
Outfall number		Network 2B			List of outfalls in c	umulative			
Receiving watercourse		A83_31			assessment				
EA receiving water Detailed Riv	ver Network ID				Assessor and affilia	ation		CP (AWJV)	
Date of assessment		30/05/2024			Version of assessn	nent		2.0.5	
Notes		Network 2B drains into a sm	ali channei. A	Assumes that	it 100% length C1	A treated via filte	er drain.		
Step 1 Runoff Quality	AADT >10,000 a	nd <50,000	Climatic reg	gion Colder	Vet 🗸	Rainfall site	An	rdtalnaig (SAAR 1343.9mm)	•
Step 2 River Impacts	Annual Q ₉₅ river flow (m	³ /s)	0.0005	Fres	water EQS limits:				
(Enter zero in Annual Q ₉₅	Impermeable road area	drained (ha)	0.292		Bioavailable dissolv	ed copper (µg/l)		1	
river flow box to assess	Permeable area draining	a to outfall (ba)	0.04		Ricovailable discolu	od zipo (ug/l)		10.9	
Step 1 runoff quality only)	r enneable area draining								
	Base Flow Index (BFI)		0.241	Is the d	ischarge in or within	1 km upstream of a	protected si	ite for conservation?	No 🔽 🗅
For dissolved zinc only	Water hardness	Low = <50mg CaCO3/I	-	P Fe	or dissolved copper	only Ambient	background	l concentration (µg/l)	0.5
For sediment impact only	Is there a downstream s	tructure, lake, pond or canal that reduces	s the velocity w	ithin 100m o	the point of dischard	je?		Yes 👻	
	○ Tier 1 Estimate	ed river width (m)	0.5						
	Tier 2 Bed wid	th (m)	1	Manning's n	0.03	Sid	e slope (m/m) 0.1 Longs	slope (m/m) 0.1
	S HOLE DEG WIG			warning 3 fr		010	e slope (mm	i) Eoliga	
Step 3 Mitigation									
				-		stimated effectiven		Settlement of	
		Brief description				Attenuation for solu ricted discharge ra		sediments (%)	
Existing measures				0		restriction	• • •	D	
Proposed measures	Filter Drain. Assumes 100% I	ength of GTA.45% solubles.		45	No	restriction	D 60		

Image 19-5.6 Network 2B HEWRAT Detailed Assessment Results


Image 19-5.7 Network 3A HEWRAT Interface Assessment Results

highways england	Highways Engl	and Water Risk Assessment Too	bl		Version 2.0.4 June 20	19			
		Soluble						Sedimen	t - Chronic Impact
EQS - Annual Average Concentration Acute Impact						act			
	Copper	Zinc						Alert. Protected	Area & D/S Structure.
	0.32	0.96	ug/l		Copper	Zinc		ediment deposition for	this site is indeed on
Step 2					Pass	Pass		ccumulating? No	
	0.17	0.53	ug/l		FIES	Fass		xtensive? No	
Step 3	0.11	0.00	ogn					Atensive:	Deposition index
Road number Assessment type		A83 Non-cumulative assessment	(-l1		HE Area / DBFO nu	umper			
OS grid reference of assessme	et point (m)	Easting 222970	(single outra	an)		Northing	707497		
OS grid reference of outfall str						Northing			
Outfall number	ucture (III)				List of outfalls in cu	-	707497		
		Network 3A			assessment	umulative			
Receiving watercourse		Tributary to Loch Restil							
EA receiving water Detailed Rin Date of assessment	Ver Network ID	N/A			Assessor and affilia			CP (AWJV)	
Notes		30/07/2024			Version of assessm	nent		3.0.4	
Step 1 Runoff Quality									
Step 1 Runoff Quality	AADT >10,000 a	nd <50,000	Climatic re	gion Colder 1	Wet 🔻	Rainfall site	Ard	italnaig (SAAR 1343.9m	n) 🔽
Step 2 River Impacts	Annual Q ₉₅ river flow (m	³ /s)	0.0005	Fresh	water EQS limits:				
(Enter zero in Annual Q _{as}	Impermeable road area	drained (ha)	0.230		Bioavailable dissolve	ed conner (ug/l)		1	
river flow box to assess			0.040						
Step 1 runoff quality only)	Permeable area draining	to outrall (na)	0.040		Bioavailable dissolved zinc (µg/l)				
	Base Flow Index (BFI)		0.241	Is the d	ischarge in or within	1 km upstream of a	protected site	e for conservation?	Yes 🗸
For dissolved zinc only	Water hardness	Low = <50mg CaCO3/I	•	P Fo	or dissolved copper	only Ambient	background	concentration (µg/l)	0
For sediment impact only	Is there a downstream s	tructure, lake, pond or canal that reduces	s the velocity v	vithin 100m of	the point of discharg	le?		Yes 🔻	
	○ Tier 1 Estimat	ed river width (m)	0.5						
	Tier 2 Bed wide		1	Manning's n	0.02	Oide		0.1	ong slope (m/m) 0.05
	Tier 2 Bed wide	un (m)		Manning s n	0.03	Side	e slope (m/m)		ong slope (m/m) 0.05
Step 3 Mitigation						stimated effectivene			
		Deinf des sainting				Attenuation for solub ricted discharge rate		Settlement of ediments (%)	
		Brief description			1680		- (
Existing measures				0	D No	restriction 🔫	0	D	
Proposed measures	Filter Drain. Assumes 100% k	ength CTA. 45% solubles. 60% sediment.		45	No	restriction 🚽	D 60		
								_	

ACCESS ARGYLL & BUTE [A83]


Image 19-5.9 Network 3B HEWRAT Interface Assessment Results

highways england	Highways Engla	nd Water Risk Assessment Tool			Version 2.0.4 June 2019			
		Soluble					Sedimen	t - Chronic Impact
Step 2 Step 3	EQS - Annual Average C Copper 0.10 0.05	Concentration Zinc 0.29 0.16	ug/l		Acute Impac	t Zinc Pass	Alert. Protected Sediment deposition for Accumulating? No Extensive? No	0.19 Low flow Vel m/s
Road number Assessment type OS grid reference of assessme OS grid reference of outfall strr Outfall number Receiving watercourse EA receiving water Detailed Rin Date of assessment Notes	ucture (m)	A83 Non-cumulative assessment Easting 222977 Easting 707546 3B Tributary to Loch Restil N.A 28/08/24	single outfa	NII)		korthing korthing hulative holds	CP (AWJV) 3.0.5	
Step 1 Runoff Quality	AADT >10,000 and	i <50,000 🔽	Climatic re	gion Colder	Wet 🔽	Rainfall site	Ardtalnaig (SAAR 1343.9m	m) 🔽
Step 2 River Impacts	Annual Q ₉₅ river flow (m ^{3/}	s)	0.0005	Fres	water EQS limits:			
(Enter zero in Annual Q ₉₅ river flow box to assess Step 1 runoff quality only)	Impermeable road area de Permeable area draining		0.059		Bioavailable dissolved Bioavailable dissolved		1	
	Base Flow Index (BFI)		0.241	Is the d		437	cted site for conservation?	Yes 🗸
For dissolved zinc only	Water hardness	Low = <50mg CaCO3/I	-	E Fe	or dissolved copper o	nly Ambient backg	round concentration (µg/l)	0
For sediment impact only		ucture, lake, pond or canal that reduces d river width (m) h (m)	the velocity v	vithin 100m o Manning's n		? Side slope	Yes 💽	ong slope (m/m) 0.05
Step 3 Mitigation		Brief description		0	reatment for Attribubles (%) Restrict No restring No restrict No restrict No restrict No r	imated effectiveness tenuation for solubles - ted discharge rate (l/s striction	0	
Proposed measures	Filter Drain (Solids 60%, Zinc 4	5%)		45	No res	striction 🔽 D	60	

Image 19-5.10 Network 3B HEWRAT Detailed Assessment Results

Image 19-5.11 Network 3C HEWRAT Interface Assessment Results

highways england	Highways Engla	nd Water Risk Assessment Too	bl		Version 2.0.4 June 20	19			
		Soluble						Sediment	- Chronic Impact
	EQS - Annual Average				Acute Imp	act			
	Copper	Zinc						Alert. Protected	Area & D/S Structure.
	0.15	0.46	ug/l	_	Copper	Zinc			
Step 2					Pass	Pass		diment deposition for the diment deposition for the dimensional deposition of the dimensional deposition deposition for the dimensional deposition depositideposition depositideposition deposition deposition deposition	
	0.08	0.25	ug/l		Pass	Pass		tensive? No	2 Deposition Index
Step 3	0.00	0.20	ogn.				- L.		- Deposition index
Road number		A83			HE Area / DBFO n	umber	•		
Assessment type		Non-cumulative assessment	(single outfa	11)					-
OS grid reference of assessme	nt point (m)	Easting 222991	(alligic outle	,		Northing	707682		
OS grid reference of outfall stru		Easting 222991				Northing	707682		
Outfall number		Network 3C			List of outfalls in c	-	707002		
Receiving watercourse		Tributary to Loch Restil			assessment				
EA receiving water Detailed Riv	er Network ID	N/A			Assessor and affilia	ation		CP (AWJV)	
Date of assessment		01/08/2024			Version of assessn			3.0.4	
Notes									
Step 1 Runoff Quality	AADT >10,000 an	d <50,000	Climatic re	gion Colder	Wet	Rainfall site	Ardta	alnaig (SAAR 1343.9mm	•
Step 2 River Impacts	Annual Q ₉₅ river flow (m ³)	/e)	0.0005	Erec	hwater EQS limits:				
				1163	iwater Logo limits.				
(Enter zero in Annual Q ₉₅	Impermeable road area d	rained (ha)	0.098		Bioavailable dissolv	ed copper (µg/l)		1 D	
river flow box to assess Step 1 runoff quality only)	Permeable area draining	to outfall (ha)	0.004		Bioavailable dissolve	ed zinc (ua/l)		10.9 D	
Step Tranon quality only)	-		0.241						
	Base Flow Index (BFI)		0.241	Is the c	lischarge in or within	1 km upstream of a	protected site	for conservation?	Yes 👻
For dissolved zinc only	Water hardness	Low = <50mg CaCO3/I	-	P F	or dissolved copper	only Ambient	background co	oncentration (µg/l)	0
For sediment impact only	Is there a downstream str	ructure, lake, pond or canal that reduce	s the velocity w	vithin 100m o	the point of dischard	162		Yes 🚽	
			-		point of alcoholig				
	C Tier 1 Estimate	d river width (m)	0.5						
	Tier 2 Bed widt	h (m)	1	Manning's n	0.03	Side	e slope (m/m)	0.1 LO	ng slope (m/m) 0.005
Step 3 Mitigation									
otep o wingation					_	stimated effectivene			
						Attenuation for solut		ettlement of diments (%)	
		Brief description		s	olubles (%) rest	ricted discharge rat	e(vs) sec	uniteritts (%)	
Existing measures				0	D No	restriction 👻	0	D	
Proposed measures	Filter Drain. Assumes 100% C	TA. 45% Solubles. 60% Sediment		45	No	restriction 🚽	D 60		
L									

Image 19-5.12 Network 3C HEWRAT Interface Assessment Results

Image 19-5.13 Cumulative Networks 3A and 3B HEWRAT Interface Assessment Results

highways england	Highways Engl	and Water Risk Assessmen	t Tool		Version 2.0.4 June 2	019			
		Soluble						Sedim	ent - Chronic Impact
	EQS - Annual Average				Acute Imp	pact			
	Copper	Zinc						Alert. Protec	ted Area & D/S Structure.
	0.38	1.15	ug/l	_	Copper	Zinc	. .	Codiment description	for this site is judged as:
Step 2					Pass	Pass			No 0.19 Low flow Vel m/s
	0.21	0.63	ug/l		r ass	1 455			No - Deposition Index
Step 3		0.00	ug.	_			-	Extensive.	Deposition index
Road number		A83			HE Area / DBFO n				
Assessment type		Cumulative assessmer	t including oodim	onto (outfallo		umber			
OS grid reference of assessme	nt point (m)	Easting 22297		ents (outrails	within room)	Northing	707546		<u> </u>
OS grid reference of outfall stru		Easting	7			Northing	707546		
Outfall number		Network 3A and 3B			List of outfalls in c	-	3A	222970	707497
Receiving watercourse		Tributaries to Loch R	ootil		assessment	amalative	3B	222970	707546
EA receiving water Detailed Riv	er Network ID	N/A	estii		Assessor and affili	ation	30	CP (AWJV)	101340
Date of assessment		08/08/2024			Version of assess			4.0.1	
Notes		Cumulative Assessment	t: Networks 3A a	nd 3B		none		4.0.1	
10100		Cumulative Assessment	. Notworks 5/14						
Step 1 Runoff Quality	110 000 -	nd <50.000	0	colder	N=1	Delete Herber		rdtalnaig (SAAR 1343.	0
	AADT >10,000 a	nd <50,000	 Climatic re 	igion Colder	Vet 💌	Rainfall site	A	rutainaig (SAAR 1343.	9mm)
Step 2 River Impacts									
	Annual Q ₉₅ river flow (m	³ /s)	0.0005	Fresh	water EQS limits:				
(Enter zero in Annual Q ₉₅	Impermeable road area	drained (ha)	0.289		Bioavailable dissolv	red copper (µg/l)		1	
river flow box to assess Step 1 runoff quality only)	Permeable area draining	to outfall (ha)	0.041		Bioavailable dissolv	red zinc (ua/l)		10.9	7
Step Transit quality only)			0.241						12 Yes V
	Base Flow Index (BFI)		0.241	Is the d	ischarge in or within	1 km upstream of a	a protected si	ite for conservatior	l? Yes ◄
For dissolved zinc only	Water hardness	Low = <50mg CaCO3/I	-	P Fo	or dissolved coppe	ronly Ambient	t background	concentration (ug	
					. aloooli ou ooppo				
For sediment impact only	Is there a downstream s	tructure, lake, pond or canal that re	educes the velocity	within 100m of	the point of dischar	ge?		Yes 🗸	
	○ Tier 1 Estimat	ed river width (m)	0.5						
	Tier 2 Bed wid	11 (1	Manning's n	0.03	014	! (!	0.5	Long slope (m/m) 0.05
	Tier 2 Bed wide	un (m)		Manning's n	0.03	510	e slope (m/m	1) 0.5	Long slope (m/m) 0.05
Step 3 Mitigation									
step 5 witigation					-	stimated effectiven			
						Attenuation for solu		Settlement of	
		Brief description		s	olubles (%) res	tricted discharge ra	nte (I/s) s	sediments (%)	
Existing measures				0	D No	restriction	0	D	
Proposed measures	Filter Drain (60% + 45% Zinc). Assumes 100% CTA		45		restriction	D 60		

Image 19-5.14 Cumulative Networks 3A and 3B HEWRAT Detailed Assessment Results

Summary of pred Prediction of impact Site	Copper Zinc	<u></u>	Capper	Zinc	Cadmium	Sediment - O Total PAH	Pyrene	Fluoranthene	Anthracene	Phenanthrene
Ste										
In Runo	ff Step 1	Step 1	1							
	Copper Zinc RST24	_	Copper	Zinc	Cadmium	Total PAH Tox	Pyrene city Threshold	Fluoranthene	Anthracene	Phenanthrene
Allowable Exceedances/y No. of exceedances/y No. of exceedances/worst y	ar 63.00 56.70		1 83.80 97	1 112.10 128	1 2.26 7	1 48.30 59	1 111.00 127	1 48.30 59	1 23.60 32	1 91.60 101
Allowable Exceedances/y No. of exceedances/worsty No. of exceedances/worsty	ar 18.00 28.00									
Threate	(kg/) (kg/) ds. RST24 21 60	Toxicity Threshold		(mg/kg) 315	(mg/kg) 3.5	(vg/kg) 16770	(veike) 875	(upikg) 2355	(upikg) 245	(vg/kg) 515
Thresho Event Statistics M			331	1165	1	16068	2780	2667	170	752
901 951	fe 45.65 147.58 fe 54.99 194.62	=	733 962	2672 3572	2	35481 70795	6138 12247	5890 11752	376 750	1661 3313
929	fe 96.36 372.28		1383	5637	4	89125	15419	14795	945	4171
In River (no mitigatio		Step 2								
Allowable Exceedancesly No. of exceedancesly No. of exceedances/warty No. of exceedances/warts sume	ar 0.3 1.2 ar 1 4 ar 0.1 0.8		Velocity Di needed	0.19	m/s -	Tier 2	is used for the c	alculation		
Allowable Exceedances/y No. of exceedances/y No. of exceedances/worsty No. of exceedances/worst summ	ar 0 0.2 ar 0 2 er 0 0									
Annual average concentration (u										
Thresho Thresho		7								
Event Statistics M 901 221 291	2.93 7.27 5.70 16.59									
In River (with mitigatio	1) Step 3									
Allowable Exceedances/y No. of exceedances/y No. of exceedances/worst No. of exceedances/worst No. of exceedances/worst summ	ar <u>8.00 0.30</u> ar <u>0 2</u> er <u>0 0</u> er <u>0 0</u>		DI	-	I					
Allowable Exceedancesly No. of exceedances/worsty No. of exceedances/worsty No. of exceedances/worst sum No. of exceedances/worst sum Annual average concentration (u	ar <u>0.00 0.00</u> ar <u>0</u> 0 er <u>0</u> 0 er <u>0</u> 0									
Thresholds hresho	(vg4) (vg4)									
Thresholds heads Thresholds heads Event Statistics Mi 900 951	da RST6 42 120 an 0.60 1.64 fe 1.61 4.00									
301		1								
Dotails of the cho SAAR (mm) Atitude (m) Easting Northing Coastal distance	1343.9 130 2764 7389									

Image 19-5.15 Network 1 HEWRAT Accidental Spillage Risk Assessment Results

	hways and		View Paramete	rs	Reset	Spillage Risk	Go To Inter	face			
ssessr	nent of Priority Outfalls										
ethod D	- assessment of risk from acc	idental spillage		Additiona	al columns fo	or use if other road	s drain to the same ou	utfall		ור	
			A (main road)	1	B	С	D	E	F		
D1 Wate	er body type		Surface watercourse								
D2 Leng	th of road draining to outfall (m)		1,421								
	d Type (A-road or Motorway)		A								
	oad, is site urban or rural?		Rural								
	tion type		No junction							_	
	tion (response time for emerger	ncy services)	> 1 hour							_	
	fic flow (AADT two way)		8,948							_	
08 % H			12							-	
	age factor (no/10 ⁹ HGVkm/year) of accidental spillage		0.75	0.00000		0.00000	0.00000	0.00000	0.00000	-	
	ability factor		0.00042	0.00000		0.00000	0.00000	0.00000	0.00000	-	
	of pollution incident		0.00031	0.00000		0.00000	0.00000	0.00000	0.00000	-	Return Per
	k greater than 0.01?		No	5.00000		0.00000	0.00000	0.0000	0.00000	Totals	(years)
	in period without pollution reduc	tion measures	0.00031	0.00000		0.00000	0.00000	0.00000	0.00000	0.0003	3192
	ting measures factor		1	0.00000			0.00000	0.00000		0.0000	0.02
15 Retu	rn period with existing pollution	reduction measure	es 0.00031	0.00000		0.00000	0.00000	0.00000	0.00000	0.0003	3192
	osed measures factor		1								
17 Resi	dual with proposed Pollution red	luction measures	0.00031	0.00000		0.00000	0.00000	0.00000	0.00000	0.0003	3192
Ne	work 1 - No existing measures					Network 1 - SuD	S attenuation basin, no	neasures factors:	ided.		
Ne	work 1 - NO existing measures					Network 1 - SuD:	S attenuation basin, no	suitable factor prov			
Ne	Spillage Factor					Network 1 - SuD:	S attenuation basin, no	suitable factor prov	eduction Factors		
Ne		Motorways	Rural Trunk U	Jrban Trui	nk	Network 1 - SuD	S attenuation basin, no Indicative for Spilla	e suitable factor prov Pollution Risk Re ges System	Optimum Risk Reduction Factor		
Ne	Spillage Factor Serious Accidental Spillages (Billion HGV km year)	Motorways 0.36	Rural Trunk U	Jrban Trui	nk	Network 1 - SuD	S attenuation basin, no Indicative for Spilla Filter Drain	o suitable factor prov o Pollution Risk Re ges System	Optimum Risk Reduction Factor 0.6		
	Spillage Factor Serious Accidental Spillages				nk	Network 1 - SuD	S attenuation basin, no Indicative for Spilla Filter Drai Grassed I	e suitable factor prov Pollution Risk Re ges System	Optimum Risk Reduction Factor 0.6		
	Spillage Factor Serious Accidental Spillages (Billion HGV Km/year) No junction	0.36	0.29	0.31	nk	Network 1 - SuD	S attenuation basin, no Indicative for Spilla Filter Drait Grassed D Pond	o suitable factor prov o Pollution Risk Re ges System	Optimum Risk Reduction Factor 0.6 0.5		
	Spillage Factor Serious Accidental Spillages (Billion HGV km/year) No junction Silp road	0.36 0.43	0.29 0.83	0.31 0.36	nk	Network 1 - SuD	S attenuation basin, no for Spilla Filter Drai Grassed I Pond Wetland	suitable factor prov Pollution Risk Re ges System h httch / Swale	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4		
Location	Spillage Factor Serious Accidental Spillages (Billion HSV km/year) No junction Silp road Roundabout	0.36 0.43 3.09	0.29 0.83 3.09	0.31 0.36 5.35	nk	Network 1 - SuD	S attenuation basin, no Indicative for Spilla Filter Drait Grassed L Pond Wetland Soakaway	Pollution Risk Reges System	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6		
	Spillage Factor Serious Accidental Spillages (Billion HGV Vmr) year) No junction Silp road Roundabout Cross road	0.36 0.43 3.09	0.29 0.83 3.09 0.88	0.31 0.36 5.35 1.46	nk	Network 1 - SuD	S attenuation basin, no for Spilla Filter Drai Grassed I Pond Wetland Soakaway Sediment	Pollution Risk Re ges System 1 httch / Swale / Infitration basin Trap	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6 0.6		
	Spillage Factor Serious Accidental Spillages (Billion HGV km/year) No junction Slip road Roundabout Cross road	0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81	nk	Network 1 - SuD	S attenuation basin, no Indicativy for Spilla Filter Drait Grassed L Pond Wetland Soakaway Sediment Unlined Di	Pollution Risk Ro ges System itch / Swale / Infitration basin Trap tch	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6 0.6 0.7		
	Spillage Factor Serious Accidental Spillages (Billion HGV km/year) No junction Slip road Roundabout Cross road	0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81	nk	Network 1 - SuD	S attenuation basin, no Indicative for Spilla Grassed I Pond Wetland Soakaway Sediment Unlined Di Penstock	Pollution Risk Re ges System 1 hitch / Swale / Infitration basin Trap tch	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6 0.6 0.6 0.7 0.4		
	Spillage Factor Serious Accidental Spillages (Billion HGV km/year) No junction Slip road Roundabout Cross road	0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81	nk	Network 1 - SuD	S attenuation basin, no Indicativy for Spilla Filter Drait Grassed L Pond Wetland Soakaway Sediment Unlined Di	Pollution Risk Reges System 1 http://www. //infitration basin Trap tch //www. /valve	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6 0.6 0.7		

HEWRAT v2.0.4Spillage Risk

File Name: A83AAB-AWJ-EAC-LTS_GEN-RP-LE-000296 |

Image 19-5.16 Network 2A HEWRAT Accidental Spillage Risk Assessment Results

🖉 engi	and		View Parame	ters	Rese	t Spillage Risk	Go To Inter	ace			
sessn	nent of Priority Outfalls										
										-	
thod D	 assessment of risk from acc 	idental spillage					drain to the same ou		1		
			A (main road)		В	С	D	E	F		
	er body type		Surface watercours	e						-	
2 Leng	th of road draining to outfall (m) d Type (A-road or Motorway)		320 A							-	
	oad, is site urban or rural?		Rural							-	
	tion type		No junction							-	
	tion (response time for emerger	ncy services)	> 1 hour							-	
	ic flow (AADT two way)		8,948								
8 % H0			12								
8 Spill	age factor (no/10 ⁹ HGVkm/year)		0.29								
9 Risk	of accidental spillage ability factor		0.00004	0.00000		0.00000	0.00000	0.00000	0.00000	_	
	of pollution incident		0.00003	0.00000		0.00000	0.00000	0.00000	0.00000	<u> </u>	Return Perio
	k greater than 0.01?		No	0.00000		0.00000	0.00000	0.00000	0.00000	Totals	(years)
	rn period without pollution reduc	tion measures	0.00003	0.00000		0.00000	0.00000	0.00000	0.00000	0.0000	36660
14 Exist	ting measures factor		1								
5 Retu	rn period with existing pollution	reduction meas		0.00000		0.00000	0.00000	0.00000	0.00000	0.0000	36660
	osed measures factor		0.6								
7 Resi	dual with proposed Pollution rec	luction measure	es 0.00002	0.00000		0.00000	0.00000	0.00000	0.00000	0.0000	61100
Net	work 2A - No existing measures					Network 2A - Filte	oice of proposed n	easures factors:			
Net	work 2A - No existing measures						drain only	Pollution Risk Re	duction Factors		
Net	work 2A - No existing measures						r drain only	Pollution Risk Re			
Net		Motorways	Rural Trunk	Urban Tru	INK		Indicative	Pollution Risk Re jes System	duction Factors Optimum Risk Reduction Factor 0.6		
Net	Spillage Factor Serious Accidental Spillages (Billion HGV Km Year) No junction		Rural Trunk 0.29	Urban Tru 0.31	ink		Indicative for Spillar Filter Drain	Pollution Risk Re es System	Optimum Risk Reduction Factor		
	Spillage Factor Serious Accidental Spillages (Billion FGV km/ year) No junction Silp road	Motorways 0.36 0.43	0.29 0.83	0.31 0.36	ınk		Indicative for Spillar Filter Drain	Pollution Risk Re jes System	Optimum Risk Reduction Factor 0.6		
	Spillage Factor Serious Accidental Spillages (Billion HOV km/year) No junction Slip road Roundabout	Motorways 0.36	0.29 0.83 3.09	0.31 0.36 5.35	ınk		drain only for Spilla Filter Drain Grassed D Pond Wetland	Pollution Risk Re res System tch / Swale	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4		
	Spillage Factor Serious Accidental Spillages (Billion FGV km' year) No junction Silp road Roundabout Cross road	Motorways 0.36 0.43	0.29 0.83 3.09 0.88	0.31 0.36 5.35 1.46	<u>ınk</u>		Indicative for Spillar Filter Drair Grassed D Pond Wetland Soakaway	Pollution Risk Re tes System tch / Swale / Infiltration basin	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4 0.6		
recation	Spillage Factor Seriose Accidental Spillages (Billion HGV km/year) No junction Slip road Roundabout Cross road Side road	Motorways 0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81	ink		Indicative for Spillay Filter Drain Grassed D Pond Wetland Soakaway Sediment	Pollution Risk Re es System tch / Swale / Infiltration basin rap	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6		
	Spillage Factor Serious Accidental Spillages (Billion FGV km' year) No junction Silp road Roundabout Cross road	Motorways 0.36 0.43 3.09	0.29 0.83 3.09 0.88	0.31 0.36 5.35 1.46	ink		Indicative for Spillar Filter Drair Grassed D Pond Wetland Soakaway Sediment Unlined Di	Pollution Risk Re tes System tch / Swale / Infiltration basin ch	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6 0.7		
	Spillage Factor Seriose Accidental Spillages (Billion HGV km/year) No junction Slip road Roundabout Cross road Side road	Motorways 0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81	ink		Indicative for Spillay Filter Drain Grassed D Pond Wetland Soakaway Sediment Unlined Di Penstock	Pollution Risk Re es System tch / Swale / Infitration basin rap ch valve	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6 0.7 0.4		
	Spillage Factor Seriose Accidental Spillages (Billion HGV km/year) No junction Slip road Roundabout Cross road Side road	Motorways 0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81	ink		Indicative for Spillar Filter Drair Grassed D Pond Wetland Soakaway Sediment Unlined Di Penstock, Notched V	Pollution Risk Re tes System tch / Swale / Infiltration basin rfap ch valve leir	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4 0.6 0.6 0.7 0.4 0.6		
	Spillage Factor Seriose Accidental Spillages (Billion HGV km/year) No junction Slip road Roundabout Cross road Side road	Motorways 0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81	ink		Indicative for Spillay Filter Drain Grassed D Pond Wetland Soakaway Sediment Unlined Di Penstock	Pollution Risk Re tes System tch / Swale / Infiltration basin rfap ch valve leir	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6 0.7 0.4		

HEWRAT v2.0.4Spillage Risk

File Name: A83AAB-AWJ-EAC-LTS_GEN-RP-LE-000296 |

Image 19-5.17 Network 2B HEWRAT Accidental Spillage Risk Assessment Results

🥟 engl	hways and		View Parameter	rs Rese	et Spillage Risk	Go To Interfa	ce			
ssessr	nent of Priority Outfalls									
	-									
ethod D	- assessment of risk from acc	idental spillage				drain to the same outf				
			A (main road)	В	С	D	E	F		
01 Wat	er body type		Surface watercourse	Surface watercourse						
D2 Leng	gth of road draining to outfall (m)		140	50						
	d Type (A-road or Motorway)		A	А						
	road, is site urban or rural?		Rural	Rural						
	ction type		No junction	Side road						
	ation (response time for emerger	ncy services)	> 1 hour	> 1 hour					_	
07 Tran 08 % H	fic flow (AADT two way)		8,948	8,948					-	
	GV age factor (no/10 ⁹ HGVkm/year)		12 0.29	12 0.93					-	
	of accidental spillage		0.29	0.00002	0.00000	0.00000	0.00000	0.00000	_	
10 Prot	bability factor		0.00002	0.00002	0.00000	0.00000	0.00000	0.00000	-	
	of pollution incident		0.00001	0.00001	0.00000	0.00000	0.00000	0.00000		Return Per
12 Is ris	sk greater than 0.01?		No	No	0.00000	0.00000	0.00000	0.0000	Totals	(years)
13 Retu	irn period without pollution reduc	tion measures	0.00001	0.00001	0.00000	0.00000	0.00000	0.00000	0.0000	39059
	ting measures factor		1	1						
	Irn period with existing pollution	reduction measur	res 0.00001	0.00001	0.00000	0.00000	0.00000	0.00000	0.0000	39059
	oosed measures factor		0.6	0.6						
17 Resi	idual with proposed Pollution red	luction measures	0.00001	0.00001	0.00000	0.00000	0.00000	0.00000	0.0000	65098
					Network 2B - Filte	r drain only				
					Network 2B - Filte		Pollution Risk Re	duction Factors		
	Spillage Factor				Network 2B - Filte					
	Spillage Factor Serious Accidental Spillages (Billion HCV km/ year)		Rural Trunk L	Irban Trunk	Network 2B - Filte	Indicative F for Spillage		Optimum Risk Reduction Factor		
	Serious Accidental Spillages (Billion HGV km/ year)	Motorways			Network 2B - Filte	Indicative F for Spillage Filter Drain	rs ystem	Optimum Risk Reduction Factor 0.6		
	Serious Accidental Spillages (Billion HGV km/year) No junction	Motorways 0.36	0.29	0.31	Network 2B - Filte	Indicative I for Spillage Filter Drain Grassed Dit	rs ystem	Optimum Risk Reduction Factor 0.6 0.6		
tion	Serious Accidental Spillages (Billion HGV km/ year) No junction Slip road	Motorways 0.36 0.43	0.29 0.83	0.31 0.36	Network 2B - Filte	Indicative F for Spillage Filter Drain Grassed Dit Pond	rs ystem	Optimum Risk Reduction Factor 0.6 0.6 0.5		
cation	Serious Accidental Spillages (Billion HGV km/year) No junction Slip road Roundabout	Motorways 0.36	0.29 0.83 3.09	0.31 0.36 5.35	Network 2B - Filte	Indicative f for Spillage Filter Drain Grassed Dit Pond Wetland	s ystem ch / Swale	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4		
Location	Serious Accidental Spillages (Billion HGV km/ year) No junction Slip road Roundabout Cross road	Motorways 0.36 0.43 3.09	0.29 0.83	0.31 0.36	Network 2B - Filte	Indicative F for Spillage Filter Drain Grassed Dit Pond Wetland Soakaway /	s s ystem ch / Swale Infiltration basin	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4 0.6		
Location	Serious Accidental Spillages (Billion HGV km/ year) No junction Silip road Roundabout Cross road Side road	Motorways 0.36 0.43 3.09 -	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81	Network 2B - Filte	Indicative F for Spillage Filter Drain Grassed Dit Pond Wetland Soakaway / Sediment Tr	s s ystem ch / Swale Infiltration basin ap	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6		
Location	Serious Accidental Spillages (Billion HGV km/ year) No junction Slip road Roundabout Cross road	Motorways 0.36 0.43 3.09	0.29 0.83 3.09 0.88	0.31 0.36 5.35 1.46	Network 2B - Filte	Indicative F for Spillage Filter Drain Grassed Dit Pond Wetland Soakaway / Sediment Tr Unlined Ditc	s ystem ch / Swale Infiltration basin ap	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6 0.7		
Location	Serious Accidental Spillages (Billion HGV km/ year) No junction Silip road Roundabout Cross road Side road	Motorways 0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81	Network 2B - Filte	Indicative F for Spillage Filter Drain Grassed Dit Pond Wetland Soakaway / Sediment Tr Unlined Ditc Penstock /	s ystem ch / Swale Infiltration basin ap h alve	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6 0.7 0.4		
Location	Serious Accidental Spillages (Billion HGV km/ year) No junction Silip road Roundabout Cross road Side road	Motorways 0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81	Network 2B - Filte	Indicative F for Spillage Filter Drain Grassed Dit Pond Wetland Soakaway / Sediment Tr Unlined Dit Penstock / Notched We	s ystem ch / Swale Infiltration basin ap h alve ir	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6 0.7 0.4 0.6 0.7 0.4 0.6		
Location	Serious Accidental Spillages (Billion HGV km/ year) No junction Silip road Roundabout Cross road Side road	Motorways 0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81	Network 2B - Filte	Indicative F for Spillage Filter Drain Grassed Dit Pond Wetland Soakaway / Sediment Tr Unlined Ditc Penstock /	s ystem ch / Swale Infiltration basin ap h alve ir	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6 0.7 0.4		

HEWRAT v2.0.4Spillage Risk

File Name: A83AAB-AWJ-EAC-LTS_GEN-RP-LE-000296 |

Image 19-5.18 Network 3A HEWRAT Accidental Spillage Risk Assessment Results

🥭 engl	hways land		View Paramete	rs R	eset Spillage Risk	Go To Interf	ace			
ssessn	ment of Priority Outfalls									
				C						
ethod D	 assessment of risk from acc 	idental spillag		Additional colum	ins for use if other roads	drain to the same out		F	-	
NA INVet	er body type		A (main road) Surface watercourse	B Surface watercour	С	D	E	F	-	
	gth of road draining to outfall (m)		105	55	se				-	
D3 Roa	d Type (A-road or Motorway)		A	A					-	
D4 If A I	road, is site urban or rural?		Rural	Rural						
	ction type		No junction	Side road						
	ation (response time for emerger	ncy services)	> 1 hour	> 1 hour						
D7 Traff D8 % H	fic flow (AADT two way)		8,948	8,948					_	
	IGV lage factor (no/10 ⁹ HGVkm/year)		0.29	0.93					-	
09 Risk	of accidental spillage	/	0.00001	0.00002	0.00000	0.00000	0.00000	0.00000	-	
10 Prop	papility factor		0.75	0.75	0.0000	0.00000	0.00000	0.00000		
	of pollution incident		0.00001	0.00002	0.00000	0.00000	0.00000	0.00000		Return Peric
	sk greater than 0.01?		No	No					Totals	(years)
	urn period without pollution reduc	ction measures	0.00001	0.00002	0.00000	0.00000	0.00000	0.00000	0.0000	41692
	ting measures factor urn period with existing pollution	reduction mean	1 ures 0.00001	0.00002	0.00000	0.00000	0.00000	0.00000	0.0000	41692
	posed measures factor	reduction meas	0.6	0.00002	0.00000	0.00000	0.00000	0.00000	0.0000	41092
	idual with proposed Pollution red	duction measure		0.00001	0.00000	0.00000	0.00000	0.00000	0.0000	69486
					Network SA - Fille	er drain only				
	Spillage Factor						Pollution Risk Re es			
	Spillage Factor Serious Accidental Spillages (Billion FOX km/ year)	Motorways	Rural Trunk	Jrban Trunk		Indicative for Spillag		Optimum Risk Reduction Factor		
	Serious Accidental Spillages (Billion HGV km/ year) No junction	0.36	0.29	0.31		Indicative for Spillag	es System	Optimum Risk		
5	Serious Accidental Spillages (Billion HGV km/ year) No junction	0.36 0.43	0.29 0.83	0.31 0.36		Indicative for Spillag Filter Drain Grassed Di Pond	es System	Optimum Risk Reduction Factor 0.6 0.6 0.5		
ation	Serious Accidental Spillages (Billion HGV km/ year) No junction	0.36	0.29 0.83 3.09	0.31 0.36 5.35		Indicative for Spillag Filter Drain Grassed Di Pond Wetland	es System tch / Swale	Optimum Risk Reduction Factor 0.6 0.5 0.4		
.ocation	Serious Accidental Spillages (Billion HGV km/year) No junction Slip road Roundabout Cross road	0.36 0.43 3.09	0.29 0.83 3.09 0.88	0.31 0.36 5.35 1.46		Indicative for Spillag Filter Drain Grassed Di Pond Wetland Soakaway	es System tch / Swale / Infiltration basin	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4 0.6		
Location	Serious Accidental Spillages (Billion HGV km/ year) No junction Silp road Roundabout Cross road Side road	0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81		Indicative for Spillag Filter Drain Grassed Di Pond Wetland Soakaway Sediment T	es System tch / Swale / Infiltration basin rap	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6		
Location	Serious Accidental Spillages (Billion HGV km/year) No junction Slip road Roundabout Cross road	0.36 0.43 3.09	0.29 0.83 3.09 0.88	0.31 0.36 5.35 1.46		Indicative for Spillag Filter Drain Grassed Di Pond Wetland Soakaway Sediment I Unlined Dit	es System tch / Swale / Infiltration basin rap ch	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6 0.6 0.7		
Location	Serious Accidental Spillages (Billion HGV km/ year) No junction Silp road Roundabout Cross road Side road	0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81		Indicative for Spillag Filter Drain Grassed Di Pond Wetland Soakaway Sediment I Unlined Di Pensock /	es System tch / Swale / Infiltration basin rap ch valve	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6 0.7 0.4		
Location	Serious Accidental Spillages (Billion HGV km/ year) No junction Silp road Roundabout Cross road Side road	0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81		Indicative for Spillag Filter Drain Grassed Di Pond Wetland Soakaway Sediment I Unlined Dit Penstock / Notched W	es System tch / Swale / Infitration basin rap ch valve eir	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6 0.6 0.7 0.4 0.6		
Location	Serious Accidental Spillages (Billion HGV km/ year) No junction Silp road Roundabout Cross road Side road	0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81		Indicative for Spillag Filter Drain Grassed Di Pond Wetland Soakaway Sediment I Unlined Di Pensock /	es System tch / Swale / Infitration basin rap ch valve eir	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6 0.7 0.4		

HEWRAT v2.0.4Spillage Risk

File Name: A83AAB-AWJ-EAC-LTS_GEN-RP-LE-000296 |

Image 19-5.19 Network 3B HEWRAT Accidental Spillage Risk Assessment Results

engl	hways land		View Paramete	ers	Reset	Spillage Risk	Go To Inte	face			
ssessr	ment of Priority Outfalls										
ethod D	 assessment of risk from acc 	idental spillag					drain to the same or				
			A (main road)		В	С	D	E	F		
	er body type		Surface watercourse								
	gth of road draining to outfall (m)		60								
	d Type (A-road or Motorway)		A							-	
	road, is site urban or rural?		Rural							-	
	ction type		No junction > 1 hour							-	
7 Trof	ation (response time for emerger fic flow (AADT two way)	ncy services)	> 1 hour 8.948							-	
08 % H			12							-	
	age factor (no/10" HGVkm/year)	1	0.29							-	
09 Risk	of accidental spillage	,	0.00001	0.00000		0.00000	0.00000	0.00000	0.00000	-	
10 Prot	Dability factor		0.75							1	
	of pollution incident		0.00001	0.00000		0.00000	0.00000	0.00000	0.00000	1	Return Perio
	sk greater than 0.01?		No							Totals	(years)
	urn period without pollution reduc	ction measures	0.00001	0.00000		0.00000	0.00000	0.00000	0.00000	0.0000	195519
	ting measures factor		1								
	urn period with existing pollution	reduction meas		0.00000		0.00000	0.00000	0.00000	0.00000	0.0000	195519
	posed measures factor		0.6								
17 Res	idual with proposed Pollution rec	suction measure	es 0.00000	0.00000		0.00000	0.00000	0.00000	0.00000	0.0000	325865
Ne	twork 3B - No existing measures	measures fac	urs:			Justification for ch Network 3B - Filte	noice of proposed r r drain only	neasures factors:			
Ne	twork 3B - No existing measures		uu s:				r drain only		duction Factors		
Ne							r drain only	Pollution Risk Re			
Ne	Spillage Factor Serious Accidental Spillages (Billion HCV km/yeer)			Urban Tru			r drain only	Pollution Risk Re ges System	Optimum Risk Reduction Factor		
Ne	Spillage Factor Serious Accidental Spillages (Billion HCV km'year)	Motorways	Rural Trunk 1				r drain only Indicative for Spilla Filter Drai	9 Pollution Risk Re ges System	Optimum Risk Reduction Factor 0.6		
	Spillage Factor Serious Accidental Spillages			0.31 0.31			r drain only Indicative for Spilla Filter Drai Grassed I	Pollution Risk Re ges System	Optimum Risk Reduction Factor 0.6 0.6		
	Spillage Factor Serious Accidental Spillages (Billion HGV Kmy year) No junction	Motorways 0.36	Rural Trunk 1 0.29	0.31			Indicative for Spilla Filter Drai Grassed Pond	9 Pollution Risk Re ges System	Optimum Risk Reduction Factor 0.6 0.6 0.5		
	Spillage Factor Serious Accidental Spillages (Billion (LV km/ year) No junction Silp road	Motorways 0.36 0.43	Rural Trunk 1 0.29 0.83	0.31 0.36			r drain only Indicative for Spilla Filter Drai Grassed I Pend Wetland	Pollution Risk Re ges System 1 httch / Swale	Optimum Risk Reduction Factor 0.6 0.6		
Location	Spillage Factor Serious Accidental Spillages (Billion HGV km/year) No junction Slip road Roundabout	Motorways 0.36 0.43 3.09	Rural Trunk 1 0.29 0.83 3.09	0.31 0.36 5.35			Indicative for Spilla Filter Drai Grassed Pond Saakaway	Pollution Risk Re ges System itch / Swale / Infiltration basin	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4 0.6		
	Spillage Factor Serious Accidental Spillages (Billion (Ho V km' year) No junction Silp road Roundabout Cross road	Motorways 0.36 0.43 3.09	Rural Trunk 1 0.29 0.83 3.09 0.88	0.31 0.36 5.35 1.46			r drain only Indicativy for Spilla Filter Drai Grassed I Pond Wetland Soakaway Sedimet	Pollution Risk Re ges System h httch / Swale / Infitration basin Trap	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4 0.6 0.6		
	Spillage Factor Serious Accidental Spillages (Billion HGV km/year) No junction Silp road Roundabout Cross road	Motorways 0.36 0.43 3.09 -	Rural Trunk 1 0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81			Indicative for Spilla Filter Drai Grassed Pond Vetland Soakaway Sediment Unlined D	Pollution Risk Re ges System http://wale / Infiltration basin Trap	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4 0.6 0.6 0.7		
	Spillage Factor Serious Accidental Spillages (Billion HGV km/year) No junction Silp road Roundabout Cross road	Motorways 0.36 0.43 3.09 -	Rural Trunk 1 0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81			Indicative for Spilla Filter Drai Grassed I Wetland Soakaway Sedimen Unlined D Penstock	Pollution Risk Re ges System 1 itch / Swale / Infittation basin Trap tch / valve	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6 0.7 0.4		
	Spillage Factor Serious Accidental Spillages (Billion HGV km/year) No junction Silp road Roundabout Cross road	Motorways 0.36 0.43 3.09 -	Rural Trunk 1 0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81			Indicative for Spilla Filter Drai Grassed Pond Wetland Sakaway Sediment Unlined D Penstock Notched V	Pollution Risk Re ges System http://wale / Infiltration basin Trap tch / valve Veir	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4 0.6 0.6 0.7 0.4 0.6		
	Spillage Factor Serious Accidental Spillages (Billion HGV km/year) No junction Silp road Roundabout Cross road	Motorways 0.36 0.43 3.09 -	Rural Trunk 1 0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81			Indicative for Spilla Filter Drai Grassed I Wetland Soakaway Sedimen Unlined D Penstock	Pollution Risk Re ges System http://wale / Infiltration basin Trap tch / valve Veir	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6 0.7 0.4		

HEWRAT v2.0.4Spillage Risk

File Name: A83AAB-AWJ-EAC-LTS_GEN-RP-LE-000296 |

Image 19-5. 20 Network 3C HEWRAT Accidental Spillage Risk Assessment Results

england			View Param	eters	Reset	Spillage Risk	Go To Inte	face			
ssessment of P	Priority Outfalls										
thod D accord	nent of risk from acc	idontal anillad	•	Addition	nal columns f	or use if other reads	s drain to the same o	utfall		7	
100 0 - 03363311	nent of hak nom acc	idental spillag	A (main road		B	C C	D	E	F	-	
1 Water body type	ne		Surface watercou		0	<u> </u>		-		-	
	draining to outfall (m)		90	30						-	
3 Road Type (A-r			A							-	
4 If A road, is site			Rural								
5 Junction type			No junction								
	onse time for emerger	ncy services)	> 1 hour								
17 Traffic flow (AA)	ADT two way)		8,948								
8 % HGV			12								
8 Spillage factor ((no/10 ⁹ HGVkm/year)		0.29								
9 Risk of acciden	ntal spillage		0.00001	0.0000	0	0.00000	0.00000	0.00000	0.00000	_	
10 Probability facto			0.75		-						Distance Disease
11 Risk of pollution 12 Is risk greater the			0.00001	0.0000	J	0.00000	0.00000	0.00000	0.00000	Tatala	Return Perio
	without pollution reduce	tion measures	No 0.00001	0.0000	h	0.00000	0.00000	0.00000	0.00000	Totals 0.0000	(years) 130346
14 Existing measu		uon measures	0.00001	0.00000	J	0.00000	0.00000	0.0000	0.00000	0.0000	130340
	with existing pollution	reduction meas	sures 0.00001	0.0000	1	0.00000	0.00000	0.00000	0.00000	0.0000	130346
16 Proposed meas	sures factor	reduction meas	0.6	0.00000	5	0.00000	0.00000	0.00000	0.00000	0.0000	130340
	proposed Pollution rec	luction measure		0.0000	n	0.00000	0.00000	0.00000	0.00000	0.0000	217244
Justification fo	or choice of existing No existing measures		tors:			Justification for cl Network 3C - Filte	hoice of proposed i er drain only	neasures factors:			
Justification fo	-		tors:					neasures factors:			
Justification fo	No existing measures		tors:				er drain only	Pollution Risk Re	duction Factors		
Justification fo	No existing measures		tors:				er drain only	e Pollution Risk Re ges	duction Factors Optimum Risk		
Justification fo Network 3C - 1 Spillage Serious /	No existing measures		tors: Rural Trunk	Urban Tr	-		Indicative	e Pollution Risk Re g <u>es</u> System	Optimum Risk Reduction Factor		
Justification fo Network 3C - I Spillage Serious J (Billing	No existing measures	Motorways	Rural Trunk		-		Indicativy Filter Drai	9 Pollution Risk Re ges System	Optimum Risk Reduction Factor 0.6		
Justification fo Network 3C - I Spillage Serious A (Billin No junct	No existing measures e Factor Accidental Spillages ion HGV km/yer/) ion	Motorways 0.36	Rural Trunk 0.29	0.31	-		Indicative for Spilla Filter Drai Grassed I	e Pollution Risk Re g <u>es</u> System	Optimum Risk Reduction Factor 0.6 0.6		
Justification fo Network 3C - I Spillage Serious A (Billin No junct	No existing measures = Factor Accidental Spillages ion HGV km/year) ion	Motorways 0.36 0.43	Rural Trunk 0.29 0.83	0.31 0.36	-		Indicativy for Spilla Filter Drai Grassed I Pond	9 Pollution Risk Re ges System	Optimum Risk Reduction Factor 0.6 0.6 0.5		
Justification fo Network 3C - I Spillage Serious A (Billin No junct	No existing measures e Factor Accidental Spillages ion HGV km/ year) ion j oout	Motorways 0.36	Rural Trunk 0.29	0.31	-		Indicative for Spilla Filter Drai Grassed I Pond Wetland	e Pollution Risk Re ges System n n Ditch / Swale	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4		
Justification fo Network 3C - I Spillage Serious A (Billin No juncti 9 Roundab	No existing measures = Factor Accidental Spillages Ion HGV km/year) ion j sout ad	Motorways 0.36 0.43 3.09	Rural Trunk 0.29 0.83 3.09	0.31 0.36 5.35	-		Indicativy for Spilla Filter Drai Grassed I Pond Wetland Soakawa	9 Pollution Risk Re ges System n http://wale / Infiltration basin	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4 0.6		
Justification fo Network 3C - I Network 3C - I Spillage Serious J (2000) Sip road 90 Roundab 90 Cross roa	No existing measures = Factor Accidental Spillages Ion HGV km/year) ion j sout ad	Motorways 0.36 0.43 3.09	Rural Trunk 0.29 0.83 3.09 0.88	0.31 0.36 5.35 1.46	-		Indicative for Spilla Filter Drai Grassed I Pond Wetland Soaksway Sediment	e Pollution Risk Re ges System n n h h h h h f h f l h filtration basin Trap	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4 0.6 0.6		
Justification fo Network 3C - I Network 3C - I Spillage Serious Silp road Silp road Si	No existing measures = Factor Accidental Spillages Ion HGV km/year) ion j sout ad	Motorways 0.36 0.43 3.09 -	Rural Trunk 0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81	-		Indicativy for Spilla Filter Drai Grassed I Pond Wetland Soakawa Sediment Unlined D	9 Pollution Risk Re ges System n http://wale //infiltration basin Trap tch	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4 0.6 0.6 0.7		
Justification fo Network 3C - I Network 3C - I Spillage Serious Silp road Silp road Si	No existing measures = Factor Accidental Spillages Ion HGV km/year) ion j sout ad	Motorways 0.36 0.43 3.09 -	Rural Trunk 0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81	-		Indicative for Spilla Filter Drai Grassed I Pond Wetland Soakaway Sediment Unlined D Penstock	e Pollution Risk Re ges System n tch / Swale r / Infiltration basin Trap tch / valve	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6 0.6 0.7 0.4		
Justification fo Network 3C - I Network 3C - I Spillage Serious Silp road Silp road Si	No existing measures = Factor Accidental Spillages Ion HGV km/year) ion j sout ad	Motorways 0.36 0.43 3.09 -	Rural Trunk 0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81	-		Indicativy for Spilla Filter Drai Grassed I Pond Wetland Soakawa Sediment Unlined D	9 Pollution Risk Re ges System n http://www. / Infiltration basin Trap tch / valve Veir	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4 0.6 0.6 0.7		

HEWRAT v2.0.4Spillage Risk

File Name: A83AAB-AWJ-EAC-LTS_GEN-RP-LE-000296 |