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Executive Summary 
 

 

This report contains analysis of the fragility of the Scottish trunk road network to disruption from 

precipitation events.  It begins with an explanation of the requirement for this type of analysis and the 

gap in the knowledge base that this report fills. Secondly there is a breakdown of the core concepts 

utilised in the report in order to build the fragility curves and consider the uncertainties at all stages in 

the process.  Thirdly there is an inspection of the Transport Scotland IRIS database, SEPA point 

rainfall data and NIMROD radar precipitation estimates. Next, there is the analysis and presentation 

of the fragility curves for the disruption events. The report concludes with a discussion and a 

reflection on future works and improvements to the process.  
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1. Introduction 

Floods are a major cause of disruption to the transport sector, leading to significant direct and indirect 

losses. The extreme weather events occurring in recent years have resulted in considerable damages 

and prolonged disruptions to UK’s transport networks. For example, widespread transport disruption 

occurred due to a succession of winter storms in 2013/14 and 2015/15 (Department For Transport, 

2014) (BBC, 2016) and also more recently due to Storm Agnes and Babet. Flood risk in Scotland is 

expected to increase in the future because of climate change. According to the climate report by 

Adaption Scotland, as a result of climate change, Scotland will experience warmer, wetter winters, with 

more intense rainfall events (Adaption Scotland 2021). By 2050, under a low emissions scenario, 

average winters are projected to be around 8% wetter and 1 degree warmer. By 2080, under a high 

emissions scenario average winters are projected to be around 19% wetter and 2.7 degrees warmer. 

According to the Centre of Ecology and Hydrology (CEH) report (Kay & Crooks, 2011), a potential 

increase in regional flood peak for different emission scenarios for the 2080 time horizon can also be 

expected. The average increase in peak flow for the ten main river basins in Scotland has been estimated 

as 7-20% for low emission, 10-24% for medium emission, and 13-31% for high emission scenarios 

(Kay & Crooks, 2011).  

Flooding can occur when moderate precipitation accumulates over several days, or when intense 

precipitation falls over a short period of time. It can also happen when ocean waves come on shore, 

when snow melts quickly, or when dams or levees break. The risk of disruption (RD) associated with a 

hazardous event such as an extreme weather or a flood event can be expressed as the product of the 

probability of the hazard occurrence P(H), the probability of disruption given the hazard P(D|H) 

(denoted as “fragility” or “vulnerability”), and the consequences of disruption (CD):  

Equation 1 RD = P(H) × P(D|H) × CD 

The hazard element of precipitation has been researched extensively with common practise to deploy 

depth-duration-frequency (DDF) or intensity-duration-frequency (IDF) curves. A DDF curve shows the 

expected height of rainfall for a given duration and frequency (Vesuviano 2022). The duration refers to 

the length of time that the rainfall event lasts, while the frequency refers to the probability of the rainfall 

event occurring in a given year. The intensity is the amount of rainfall that falls during the event, 

typically measured in millimetres per hour. IDF curves are useful for a variety of applications, including 

designing drainage systems and flood control measures. DDF and IDF curves are available or can be 

easily derived for any area in Scotland. Flood hazards can also be estimated, but this often requires the 

development of hydraulic models to transform the information on the precipitation into hydraulic 

parameters such as e.g. flood height and velocity. 
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Flooding can affect infrastructure in various ways, including physical damage to roads, bridges, and 

buildings, as well as disruptions to transportation services and as such it is very difficult to quantify the 

overall costs. A significant effort was made by the European Commission through the development of 

global flood depth-damage functions for many typologies of infrastructure assets (Huizinga, De Moel 

and Szewczyk 2017). The study concluded that between 4-18% of flood infrastructure damage was 

attributed to roads with urban areas being more affected than rural areas. In addition to direct physical 

damage, flooding often leads to indirect costs, such as business interruptions, loss of productivity, and 

increased transportation costs. These indirect costs are often more challenging to measure and quantify 

compared to direct physical damages. Analysis of these have been specifically carried out in a study 

focused on the vulnerability of roads in Scotland (Winter, et al. 2016). Quite surprisingly, there is a 

general lack of models for describing the fragility (or vulnerability) of roads.  

Fragility analysis is an important tool for analysing the susceptibility of a system or structure to failure 

or damage under different conditions. In disaster models, fragility curves are frequently employed to 

establish the likelihood of surpassing a specific damage level based on the intensity of the hazard that 

triggers the disaster. Fragility curves play a crucial role in evaluating and mitigating the risk of road 

damage caused by flooding, offering valuable insights for infrastructure planning, design, and 

emergency response strategies. These curves can be broadly classified into three main categories, 

depending on the approach employed for deriving them: empirical, numerical, expert judgment, or 

combinations thereof. 

Empirical fragility curves derive from observed data from historical events or experiments, making 

them data-driven and potentially reflective of real-world performance. However, this method requires 

a substantial amount of reliable, quality-assured data. In instances where this data is incomplete or 

unavailable, numerical methods can fill data gaps and model complex systems and interactions. Though, 

they are highly sensitive to model assumptions and demand a detailed understanding of physical 

processes and sophisticated computational tools, making them resource-intensive. A comprehensive 

comparison of empirical and numeric flood fragility and vulnerability methods is given by Galasso et 

al., (Galasso, Pregnolato and Parisi 2021). 

By comparison, expert judgment offers a swift estimate in resource-limited scenarios and can integrate 

holistic knowledge. However, it heavily relies on the individual's expertise, making results susceptible 

to personal biases and lacking precision in quantifying damage states compared to the other two 

methods. An example of cross disciplinary expert judgement applied to multiple hazard transport 

fragility for roads subjected to debris flow is given in (Argyroudis, et al. 2019). 

An empirical flood depth/disruption curve for road flooding was developed by Pregnolato et al. by 

fitting a relationship between the depth of standing water and vehicle speed (Pregnolato, et al. 2017). 



- 8 - 
 

This relationship was fit to data points that were a combination on of experimental study, road safety 

literature and from expert opinion. This relationship was then incorporating this into existing transport 

models to produce better estimates of flood induced delays. 

In general, it is very difficult to gather information on the type of flooding and also on the intensity of 

the flooding event that has caused a disruption to a road. Thus, this study, in contrast to other studies in 

the literature, aims to establish fragility curves using parameters related to the precipitation as an 

intensity measure, without the ambition of classifying the flood hazard typology (i.e., pluvial, fluvial, 

or coastal).  

Without fragility analysis, the quantification of the effective network risk is limited, increasing the 

likelihood that responsible authorities will make sub-optimal decisions on improvements to network 

development, robustness and resilience. Adapting and maintaining transport systems to remain resilient 

to the effects of climate change is part of the national transport strategy. The proposed fragility curves 

will provide a vital quantitative tool for network risk analysis and will aid in identifying parts of the 

network that are failing at a greater frequency than their design specifications. Additionally, the 

expected disruption to the road network for different emissions scenarios can be calculated using these 

fragility curves. This tool can also inform decisions regarding the management of network demand 

during extreme rainfall events. Effective management of network demand is a stipulation of the climate 

change act designed to help meet net-zero targets. 

The rest of the report is organised as follows: Section 2 contains a review of the concepts used 

throughout the report, including a description of the trunk road network and Iris database, rainfall 

interpolation techniques and fragility analysis. Section 3 outlines the methodology that draws from these 

concepts. Section 4 presents the results of the analysis and section 5, the conclusions and 

recommendations for future work.  
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2. Database and Concept Review 

This section provides the theory of the core concepts applied throughout this study. For readability, the 

order in which the information appears in the review is the same as the order in which the objectives 

are met in the methodology. 

2.1. Trunk Road Network and IRIS Database 

The Scottish trunk road network is a system of major roads in Scotland that are managed by Transport 

Scotland. The trunk road network includes some of the most important and busiest roads in Scotland, 

such as motorways, dual carriageways, and major single carriageway roads. These roads provide key 

connections between towns and cities, as well as access to ports, airports, and other important 

destinations. The Scottish trunk road network consists of over 3,500 miles of road and is Scottish 

Ministers’ single biggest asset (Transport Scotland, The Trunk Road Network, Overview 2014). It has 

a gross asset value of over £20.8 billion and represents 6% of the total Scottish road network. It carries 

35% of all traffic and 60% of heavy goods vehicles. 

 

Figure 1: Map of Scottish trunk road network. 

Transport Scotland has developed an asset management systems to gather information on trunk road 

assets and aid decision making. Collaborative efforts with the Welsh Government led to the 

procurement of a single contract for an Integrated Road Information System (IRIS) in 2012. IRIS is a 

fully integrated Geographical Information System (GIS) map-based asset management system that links 
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data on conditions, inventory, accidents, structures, drainage and maintenance. Transport Scotland 

currently uses IRIS functions along with other core systems to manage and maintain the trunk road 

network (Transport Scotland, Asset Management Systems and Data 2014). 

As of August 2022, there are two companies that maintain the trunk road network in four regions of 

Scotland, known as the Operating Companies (OCs): 

• BEAR Scotland - responsible for the South East and North West units 

• Amey - responsible for the North East and South West units 

Each OC is responsible for maintaining and improving the trunk roads in its area, including routine 

maintenance, winter maintenance, emergency response, and major projects (Transport Scotland, The 

Trunk Road Network, Operating Companies 2014). They work closely with Transport Scotland to 

ensure that the trunk road network is safe, efficient, and well-maintained. In the event of a road failure 

and the resulting call out of the operating company, the call out is logged in the IRIS Management of 

Incidents system (Transport Scotland, Asset Management Systems and Data 2014). It is worth 

highlighting that the true number of incidents that occur on the trunk road network is likely to be higher 

than is recorded in the IRIS database since the database only contains the events that are responded to 

by the operating companies. A further consideration is that the likelihood of attending an incident is 

unlikely to be uniform across all incident magnitudes as operating companies will prioritise the most 

severe events and so the probability that these will be represented in the IRIS database is higher. The 

variation in attendance probability with incident severity is not known. 

2.2 Rainfall Interpolation 

 

Interpolation methods are important techniques that allow for the estimation of values of a variable at 

points where it is not directly measured or observed. Many of the events that are reported in the IRIS 

database are not in close proximity to a weather station, hence the value of the rainfall must be estimated 

using an interpolation technique. Interpolation methods can be used to create continuous surfaces or 

maps of a variable, which can be easier to visualise and analyse than discrete data points. This can help 

to identify patterns and trends in the data, and to better understand the relationships between different 

variables. The most commonly applied interpolation methods are: 

• Natural Neighbour Interpolation: the study area is divided into a network of Thiessen triangles 

and the unknown location value is estimated by averaging the values of the nearest observed 

points weighted by the area of their corresponding triangles. 

• Inverse Distance Weighting (IDW): the unknown location value is estimated as the weighted 

average of the values at nearby locations, with the weights decreasing as the distance from the 

target location increases. 
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• Kriging: the unknow location value is estimated based on a model of the spatial autocorrelation 

of the variable being interpolated, and the observations at nearby locations. Kriging is a popular 

method because it provides estimates of the interpolation error. 

Multiple authors have investigated the comparison between basic mathematical interpolation methods 

such as Theissen polygons and IDW and geostatistical interpolation methods such as Kriging, and the 

conclusion is that for low-density networks of rain gauges, Kriging outperforms the alternatives for 

daily, monthly and annual rainfall (Goovaerts 2000), (Mair 2011). Different types of kriging are 

compared in this study with the best performing selected to simulate the rainfall timeseries at the 

unknown locations. 

Kriging, also known as Gaussian process regression, represents a full family of geostatistical 

interpolation techniques (Bhattacharjee 2019). They are used to predict the values of a random field at 

unobserved locations based on observations of the field at nearby locations. The method assumes that 

the random field being modelled is a realisation of a spatially continuous stochastic process, and the 

relationships between the values of the random field at different locations are described by a covariance 

function or semivariogram (Bhattacharjee 2019). The semivariogram is a plot of the variance of the 

difference between pairs of points as a function of the distance between them. The semivariogram 

provides information about the spatial structure of the variable being studied, such as its range and the 

degree of spatial dependence. This study considers four different types of kriging: ordinary, universal, 

external drift and regression. An explanation of each along with the equations that describe the 

processes are provided in the Appendix A.1. 

 

2.3. Fragility 

The fragility is a concept used in reliability engineering and risk analysis to assess the likelihood of a 

failure event given certain conditions or circumstances. It provides a measure of the probability that a 

system or component will fail, given that specific conditions or factors are present. 

The process for developing a fragility curve for assessing the vulnerability of a critical road link to 

rainfall-induced failures, involves analysing the statistical relationship between rainfall intensity and 

the performance of the asset (whether it fails or not). Rainfall intensity is categorised into bins, and the 

conditional probability of failure for each bin is calculated by dividing the number of failures in that 

bin by the total number of rainfall events. The approach focuses on critical road sections that have 

experienced disruptions during a specified period. 

To address uncertainty in rainfall intensity prediction using Kriging interpolation, a Monte Carlo 

analysis is incorporated. Kriging results in an uncertain prediction of rainfall intensity at unmonitored 

locations, with uncertainty described by a Gaussian distribution. The Monte Carlo technique involves 
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simulating numerous scenarios by drawing random values from input probability distributions, 

generated from the process variance of each Kriging model. This statistical analysis provides a 

distribution of results, allowing for the estimation of the probability of different outcomes and the 

overall risk associated with the system, instead of providing a single deterministic value. The complete 

process details are provided in Appendices A.2 and A.3. 

 

3. Methodology 

The objective of this study is to investigate the likelihood of experiencing a disruption in the road 

network due to extreme precipitation events, and to develop an empirical damage model for relating 

precipitation intensity to the probability of disruption. To this end, disruption events in the IRIS 

database are considered to assess the probability of failure for a given level of rainfall intensity. An 

event is considered a disruption event if it is classed as such in the IRIS database. For these events there 

is no knowledge of the rainfall intensity at the location site that is associated with the disruption and, so 

it is necessary to obtain an estimate of precipitation. A common geographical interpolation tool, 

regression kriging, is deployed, coupling point rainfall data from SEPA weather stations (SEPA n.d.), 

1km radar data from NIMROD radar system (Met Office 2003), and location and altitude data 

(googleapis n.d.).  

The fragility curve were constructed by first identifying road closure events from Transport Scotland’s 

IRIS database. A rainfall time series spanning the first to last disruption entry in the IRIS database was 

then estimated at each event location. The probability of a given rainfall intensity causing a road closure 

was calculated by dividing the number of events that a given rainfall intensity caused road closures at 

an affected  location by the total number of times this intensity is observed at any affected location. 

Monte Carlo analysis was performed on the predicted precipitation values using the mean and the 

variance of the Kriging process to calculate the mean prediction and a confidence interval.  

3.1. Event Identification 

 

Table 1 provides the breakdown of the flood related events at the time of analysis spanning the period 

January 2015 to December 2021. The location of the 506 disruption events is shown in Figure 2. 

Stage Data Points 

Iris Database 4898 

Events that caused Disruption 569 

Events that caused Disruption in window 01-01-2015 to 01-01-2021 506 
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Figure 2: Location of events recorded as disruption caused in IRIS database and considered in this 

report. 

3.2. Kriging Data Sources  

For each of the 506 events recorded in Table 1, a time series of hourly rainfall was estimated spanning 

the period January 2015 to December 2021. In order to do this, different kriging methodologies were 

considered using combinations of the following inputs: 

• OS Easting Northing 

• Altitude 

• SEPA rain station hourly rainfall 

• NIMROD 1km radar 

 

The OS Easting and Northing of the SEPA and radar rainfall data were stated with each dataset. The 

altitude variables were obtained by using the Google Elevation API. Figure 3 shows the location of the 

SEPA weather stations on a Map of Scotland. 

Events that caused Disruption on A-Class sections (01-01-2015 to 01-01-2021) 393 

Events that caused Disruption on M-Class sections (01-01-2015 to 01-01-2021) 113 

Table 1: Breakdown of flood related events in the IRIS database. 
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Figure 3: Location of SEPA weather stations. 

 

3.2.1. SEPA Data Quality  

 

Each SEPA timeseries was cropped to fit the time window 01/01/2015 to 31/12/2021. Accompanying 

the data was a quality code for each value. Bad values were removed from the analysis, and good values 

accepted. The remainder of the unchecked rainfall values were evaluated through a simple process of 

comparison with concurrent radar estimations for an encompassing area. Thereafter, a 5km box was 

drawn around each station location and the maximum and minimum radar value across that area were 

recorded along with the radar measurement at each location. Any unchecked point radar values that fell 

out with the radar range for the 5km box were indexed. Next, errors between the radar measurements 

and the station observations were calculated for checked rain gauge measurements. Any unchecked 

value that fell outside the checked error margin for the given intensity at that location was considered 

anomalous. Any station reading that was out with the radar range for the surrounding 5km and was 

flagged as an anomaly was considered suspicious and removed from the dataset. For timesteps that did 

not have a corresponding radar measurement, the values were checked against the nearest rain gauge 

stations to evaluate if the measurement was reasonable. The procedure was composed to ensure that 

observations would only be removed if there was compelling evidence to do so. The numbers of values 

flagged by SEPA are recorded in Table 2. The number of values flagged by the data quality procedure 

outlined above are recorded in Table 3. 
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 Count % of total 

Checked = 0 9,702,084 53.05 

Unchecked = 1 7,966,444 43.56 

Suspect = 2 619,136 3.39 

Total 18,287,664 100 
Table 2: Data mask SEPA rainfall stations for the period 01/01/2015 – 31/12/2021. 

 

Treatment of Unchecked Sepa Values 

 Count % of total 

Not Suspect 7,952,281 99.82 

Suspect 14,163 0.18 

Total 7,966,444 100 
Table 3: Data Quality Check of Unchecked Values 

 

3.2.2. NIMROD Data Quality 

 

The 1km NIMROD product is a UK wide composite of quality controlled and corrected surface 

precipitation values from the UK’s network of C-band radars. Values are evaluated at 5 minute 

resolution on a Cartesian National Grid. The data has undergone extensive processing to correct for 

various sources of radar error such as noise, attenuation and range (Stone, Harrison and Standing 2008). 

The 1km gridded composite C-Band radar images of precipitation are calibrated with rain gauges. For 

full details see the NIMROD Radar Processing document (Harrison, Driscoll and Kitchen 1998).  

At each point in the grid the product uses the highest quality and resolution data available and as such 

the quality of the composite radar product is dependent on both the quality and resolution of the source 

data. This in turn is dependent on distance from the nearest radar site (Stone, Harrison and Standing 

2008). For Scotland these are radar stations are recorded in Table 4. 

 

Name Latitude Longitude Area 

Munduff Hill 56°12’53”N 003°18’38”W Fife 

Hill of Dudwick 57°25’51”N 002°02’10”W Aberdeenshire 

Holehead 56°01’06”N 004°13’08”W Stirling 

Corse Hill 55°41’28”N 004°13’53”W Strathclyde 

Drium-a-Starraig 58°12’40”N 006°10’59”W Isle of Lewis 

 Table 5: Name and location of NIMROD radar stations in Scotland.  

 

The decrease of grided radar data quality decreasing with distance is demonstrated here in Figure 4. 

The correlation between the SEPA hourly rainfall observations and NIMROD radar estimates 
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significantly decreases as the distance from the location to the nearest radar station increases. This is 

not a surprising result, and it follows that the value of radar information as a correlated variable for the 

external variable kriging methods is location dependent. 

 

 

Figure 4: Correlation between hourly SEPA rainfall station observations and radar hourly rainfall 

estimates for the same location, against distance from the nearest radar station. 

 

NIMROD 1km data was downloaded from CEDA (Met Office 2003) for the years 2015 to 2021. Files 

were cropped to the area of Scotland and hour average rainfall maps averaged from all available 5 

minute resolution files for any given hour. To turn rainfall rates into mm/hr, NIMROD rates were 

divided by 32 to adjust values from the NIMROD system data saving standard which were integer 

precipitation rates in units of (mm/hr)*32. Figure 5 shows an example rainfall map from NIMROD for 

the 01/01/2015 averaged across the period 00:00 to 00:55. Table 6 shows the number of 5 minute 

NIMROD files present within each hour of the analysis. 

  

 Year   

File Count 2015 2016 2017 2018 2019 2020 2021 total Total [%] 

0 295 121 131 129 148 283 20 1127 1.837 

1 8 10 19 3 4 2 1 47 0.076 

2 4 4 3 0 1 2 1 15 0.024 

3 7 7 5 5 3 2 0 29 0.047 

4 1 6 5 0 1 1 2 16 0.026 

5 8 2 2 2 4 3 4 25 0.041 

6 3 4 9 3 0 3 2 24 0.039 

7 5 4 5 1 0 1 3 19 0.031 

8 1 6 10 3 0 2 1 23 0.038 
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9 2 5 5 6 2 2 1 23 0.038 

10 6 8 14 3 1 5 1 38 0.062 

11 22 14 39 29 8 5 6 123 0.200 

12 8398 8593 8513 8576 8588 8473 8718 59859 97.541 

total 8760 8784 8760 8760 8760 8784 8760 61368 100 

Table 6: Number of NIMROD 1km 5 minute resolution files present within each hour time step between 

00:00 01/01/2015 and 23:55 31/12/2021. Total counts for each file number across the full timespan are 

recorded along with the percentage of the total number of hours observed across the full timespan. 

 

Table 6 shows that over 98% of the individual hours modelled by NIMROD 1km radar have at least 

one measurement present, with over 97.5% having 12 x 5 minute increments present. In this analysis 

only hours where all 5 minute files were present for each hour were considered, any hours where one 

file was missing was discarded. 

 

Figure 5: NIMROD 1km radar for Scotland at 01/01/2015 averaged between 00:00 and 00:55. 
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3.3. Kriging Comparison 

 

A number of different Kriging approaches were tested and the results compared to evaluate which 

method is most appropriate for the interpolation purposes. The methodology was evaluated at six 

locations where SEPA stations were located: Newton of Falkland, Esslemont House, Laxdale, 

Drummore of Cantray, Townfoot and Tobermory. These locations were selected based on their varying 

proximities to other SEPA stations and NIMROD radar locations listed in Table 7. The reason for doing 

so was to provide insight into how the accuracy of the kriging process changes with respect to the 

sparsity of SEPA rainfall stations and radar accuracy. All kriging processes were carried out using the 

gstools Python package (Müller, et al. 2022). 

Test Location Information 

Name Newton 

of 

Falkland 

Esslemont 

House 

Laxdale Drummore 

of Cantray 

Townfoot 

(Glencaple) 

Tobermory 

StationID 36936 35536 37870 38006 37616 35936 

Latitude  

[Deg] 

56.2543 57.3651 57.8687 57.4833 54.9947 56.6203 

Longitude 

[Deg] 

-3.1863 -2.1124 -6.8936 -4.0062 -3.569 -6.0806 

Easting  

[m] 

326510.7 393241.8 109867.5 279735.2 299634.6 149698 

Northing  

[m] 

707491.1 830497.6 897041.6 845418.2 567817.5 755031.5 

Altitude 

[m] 

170.6 0 287.2 385.6 45.4 0 

Closest SEPA 

[km] 

5.1 13.4 34.3 5.2 14.0 32.5 

Closest SEPA 

Name 

Rossie 

Farm 

Balmedie 

STW 

Birkie 

Hue 

Culloden 

Battlefield 

Kinmount 

House 

Polloch 

Closest 

NIMROD [km] 

8.8 8.7 56.8 118.4 121.1 133.3 

Table 7: Name and proximity information to nearest rain gauge station of test locations. 

 

A total of 6 different kriging applications were performed with the test locations omitted from the 

dataset: ordinary kriging of SEPA point data with latitude and longitude (OKLL), universal kriging of 

SEPA point data with latitude and longitude (UKLL), universal kriging of SEPA point data with latitude, 

longitude and radar (UKLLR), kriging of SEPA point data with altitude as an external drift variable 

(KEDA), kriging of SEPA point data with latitude, longitude and radar as external drift variables 
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(KEDLLR), and regression kriging of SEPA point data with latitude, longitude and radar as regression 

variables (RKLLR) The different kriging flavours are described in Appendix A.1.2-A.1.6. The test 

locations were simulated for the year 2021. Two metrics were used to assess the quality of each kriging 

process: mean absolute error (MAE) and correlation coefficient (CC). The MAE (Equation 2) gives the 

average magnitude of errors contained in a set of estimations. 

Equation 2 𝑀𝐴𝐸 =  
∑ |𝑦𝑖−𝑥𝑖|𝑛

𝑖=1

𝑛
 

 

where 𝑦𝑖 is the i-th prediction of observation 𝑥𝑖 and n is the total number of observations. 

CC (Equation 3) gives the strength of linearity between two variables. It spans between -1 and +1 with 

-1 indicating perfect negative linearity and +1 indicating perfect positive linearity. 

Equation 3 𝐶𝐶 =  
𝐶𝑂𝑉(𝑥,𝑦)

𝜎𝑥𝜎𝑦
 

where 𝑐𝑜𝑣(x, y) is the covariance of x and y, 𝜎x is the standard deviation of x and 𝜎y is the standard 

deviation of y. Covariance is a measure of the joint variability of two random variables. It quantifies 

how much two variables change together, or the extent to which they are related to each other. The 

covariance of variables x and y with length n is given as: 

Equation 4 𝑐𝑜𝑣(𝑥, 𝑦) =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑁

𝑖=1

𝑛−1
 

where �̅� and �̅� are the mean values of x and y respectively. If the covariance is positive then the two 

variable increase or decrease at the same time, if the covariance is negative then they tend to increase 

or decrease in the opposite direction from one another. 
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Kriging Type 

 

Ordinary 

(Lat, Lon) 

OKLL 

 

Universal 

(Lat, Lon) 

UKLL 

 

External Drift 

(Altitude) 

KEDA 

 

External Drift  

(Radar) 

KEDLLR 

 

Regression 

(Radar) 

RKLLR 

 

Radar Alone 

CC 

 

MAE* 

[mm] 

CC 

 

MAE* 

[mm] 

CC MAE* 

[mm] 

CC MAE* 

[mm] 

CC 

 

MAE * 

[mm] 

CC 

 

MAE * 

[mm] 

Newton of 

Falkland 
5.1 8.8 0.85 0.69 0.85 0.69 0.85 0.69 0.80 0.61 0.88 0.66 0.61 1.76 

Esslemont 

House 
13.4 8.7 0.74 0.87 0.76 0.84 0.74 0.88 0.89 0.54 0.89 0.57 0.88 0.64 

Laxdale 34.3 56.8 0.38 1.53 0.55 1.34 0.51 1.52 0.72 1.09 0.72 1.09 0.72 1.19 

Drummore 

of Cantray 
5.2 118.4 0.77 0.98 0.78 0.96 0.78 0.96 0.81 0.78 0.72 0.93 0.67 1.04 

Townfoot 

(Glencaple) 

14.0 121.1 0.79 0.96 0.79 0.92 0.79 0.95 0.78 0.94 0.82 0.99 0.63 1.55 

Tobermory 32.5 133.3 0.34 1.62 0.57 1.21 0.49 1.41 0.52 1.28 0.47 1.35 0.33 1.65 

mean - - 0.65 1.11 0.72 0.99 0.69 1.07 0.75 0.87 0.75 0.93 0.64 1.31 

*MAE values were calculated for all observed hourly rainfall values above 1mm.  

The mean result across all stations is displayed with the best performing method at each location and overall underlined. 

Table 8: Kriging prediction metric results for all test point rainfall locations for 2021. 
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An interesting result of the kriging methodologies is that different methods work to different degrees 

for different locations, as shown in Table 8. OKLL is the only model that does not outperform radar 

estimations alone, indicating kriging’s usefulness in improving rainfall estimations compared with radar 

and justifies its selection as a methodology. Broadly speaking, inclusion of NIMROD data improved 

the accuracy of rainfall predictions with the exception of Tobermory for which UKLL performed best. 

A comparison of Tobermory and Laxdale, which have similar proximities to other point rainfall stations, 

demonstrates the influence that radar station proximity has on improving hourly rainfall predictions. 

As a side point, if new point rainfall stations are to be established, preference should be made for regions 

where there is not adequate radar cover as this would have the most significant improvement on nation-

wide rainfall interpolation. Similarly, new radar stations should be deployed for regions that are not 

well covered by point rainfall stations for the same reason. 

Since altitude as an external drift variable did not improve the estimations compared to UKLL for any 

metric for any location, there have been no further estimations using altitude. While there has been a 

considerable amount of research into the significance of altitude for rainfall interpolation over longer 

timespans such as monthly and annual rainfall, this did not seem to be the case for hourly rainfall in this 

investigation. However, this observation is inconclusive due to the small sample size and short time 

period of observation. This is an interesting area for future investigation.  

KEDLLR has the joint highest mean CC across all locations and the best mean MAE across all test 

locations and thus is selected to estimate the rainfall intensity at the event locations for January 2015 to 

December 2021. An average CC of 0.75 for KEDLLR demonstrates very good correlation between the 

observed and predicted hourly rainfall. 

After processing hourly data, SEPA and Radar intensities have been also aggregated into 3 hour, 6 hour, 

12 hour and 24 hour periods with an hour timestep and kriging is carried out on each timestep. Hence 

5 datasets were produced, one for each time window with its associated variance estimation. 

 

3.5. Fragility 

The approach outlined here provides an estimate of fragility specifically for critical road sections that 

have experienced at least one disruption during the specified period. The probability of disruption by 

rainfall of a given intensity P(D | I=x) at a critical location was calculated using Equation 5, dividing 

the number of failures for a given intensity by the total instances of that intensity across all locations.  

Equation 5 𝑃(𝐷 | 𝐼 = 𝑥) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑤ℎ𝑒𝑛 𝐼=𝑥

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑤ℎ𝑒𝑛 𝐼=𝑥
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To ensure there was a sufficient population of points for the analysis, the intensity measures were 

divided into bins. For example, the probability of failure due to 10-12 mm of hourly rainfall was 

determined by dividing the number of failures recorded for that intensity in the IRIS database by the 

total instances of 10-12 mm rainfall observed at locations where failures occurred. Given that the IRIS 

database did not contain the time that the event occurred but only the date of the response time, the 

intensity measures considered were the maximum observed for the intensity measure in the window 

spanning 24 hours either side of midnight on the event date. 

The rainfall Kriging process estimates the intensity associated with each failure and intensities across 

the recorded length of the database. The process also quantifies the uncertainty in predicting rainfall 

intensity at unmonitored locations, which increases with distance from monitored ones. This uncertainty 

was modelled using a Gaussian distribution defined by the mean estimate and standard deviation of the 

estimate.  

To robustly assess conditional probabilities of failure amid this uncertainty, a Monte Carlo technique 

was incorporated into the methodology. This computational approach involved simulating numerous 

scenarios by drawing random values from input probability distributions, generated from the process 

variance of each Kriging model. Conditional probabilities were then calculated using these sampled 

input values, recording the corresponding outputs. This iterative process generated a comprehensive 

range of possible outcomes, offering a statistical distribution of results rather than a single deterministic 

value. The mean and standard deviation (or selected percentiles) of this distribution were used to 

estimate the probability of different outcomes and assess the overall risk associated with the system. 

In this analysis, 100 sample timeseries for each location were generated from the kriging prediction 

means and standard deviations. The probability theory was then applied to create a normal distribution 

of probabilities for each intensity, establishing a probability interval using the p-value of 1.96 for 95% 

confidence. 

By utilizing the upper and lower limits of the 95% confidence interval on the y-axis (representing 

probability) and the bin edges on the x-axis (depicting rainfall intensity), an empirical step plot was 

constructed, which describes the empirical fragility curve for the given intensity measure. Selecting a 

specific intensity value along the x-axis allows for the determination of a 95% probability interval, 

while choosing a probability value along the y-axis provides upper and lower limits of intensity. An 

example of this type of plot filled with arbitrary intensity units and dummy values is shown in Figure 

6. 
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Figure 6: Example empirical fragility curve. 

Additionally, a second plot is presented, illustrating the best-fit cumulative distribution function 

between the upper and lower boundary values. In this process, the highest observed UK value of rainfall 

for each duration is incorporated as a point, with a corresponding disruption probability of 1. This 

assumes that if the largest rainfall ever recorded in the UK were to occur on a road section, failure 

would be inevitable. The UK maximums are recorded in Table 8. 

 

 UK Maximum [mm] 

Hourly 92 

3 Hour 178 

6 Hour 187* 

12 Hour 204* 

24 Hour 238 

Table 9: Met Office UK rainfall records. 

*Linearly interpolated value  

 

Using the empirical points and the theoretical maxima, 5 two-parameter cumulative distributions 

(normal,  logistic, lognormal, Weibull and extreme value) were fitted to the points. An example of this 

for the same dummy values is shown in Figure 7. 
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Figure 7: Example distribution fit to dummy empirical conditional probability values. 

Finally, a probability box is defined by taking the maximum probabilities of the lower limit and the 

minimum probabilities of the upper limit. The idea here is that since the shape of the distribution is 

unknown, a probability box that describes all possible values is presented in order to inform the possible 

shape of the fragility curve in the unknown region, which can only be truly known through the 

acquisition of additional data. The probability box associated the dummy values in  Figure 7 is shown 

in Figure 8. 

 

Figure 8: Example probability box for dummy distribution fits. 

 

Since the probability box describes all possible values in the unknown region, application of these 

curves should be approached cautiously, and it is advised that practitioners use the empirical estimations 

wherever possible.
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4. Results  

 

The results are recorded for peak, 3 hour cumulative, 6 hour cumulative, 12 hour cumulative and 24 

hour cumulative rainfall. For the peak rainfall, the peak event in the 24 hours before and the day of the 

recorded event is selected since the database did not contain a time stamp for the disruption event.  

For the cumulative windows, the totals were calculated with a sliding one hour timestep and then the 

number of events was divided by the size of the window to ensure that all the extreme events were 

captured, and the results were not distorted by an arbitrary starting position. As with the peak rainfall 

the largest aggregate rainfall in the 24 hours before and the day of the recorded event was selected. 

Each section contains four figures: a histogram showing the distribution of magnitudes associated with 

each event (including the 95% upper and lower confidence bounds calculated from uncertainty curve 

based on the distance from the event location to the nearest radar station), an empirical disruption 

probability curve, the fitting of multiple distributions through the upper and lower estimates and a 

probability box from the maximum and minimum values associated with the group of distributions.  
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4.1. 1 Hour (Peak) 

 

 

 

Figure 9: Histogram of mean and lower and upper 95% confidence bounds for peak predictions 

associated with the 506 disruption events (left). Empirical Disruption/Conditional Probability Curve for 

Peak Rainfall (right). 

 

 

 

Figure 10: Cumulative distributions fitted to empirical conditional probability values for peak rainfall 

including UK maximum point (left). Probability box formed by the maximum and minimum values of all 

fitted distributions. 
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4.2. 3 Hour Cumulative 

 

 

Figure 11: Histogram of mean and lower and upper 95% confidence bounds for 3 hour cumulative 

predictions associated with the 506 disruption events (left). Empirical Disruption/Conditional Probability 

Curve for 3 hour cumulative rainfall (right). 

 

 

Figure 12: Cumulative distributions fitted to empirical conditional probability values for 3 hour 

cumulative rainfall including UK maximum point (left). Probability box formed by the maximum and 

minimum values of all fitted distributions. 
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4.3. 6 Hour Cumulative 

 

 

Figure 13: Histogram of mean and lower and upper 95% confidence bounds for 6 hour cumulative 

predictions associated with the 506 disruption events (left). Empirical Disruption/Conditional Probability 

Curve for 6 hour cumulative rainfall (right). 

 

 

 

 

Figure 14: Cumulative distributions fitted to empirical conditional probability values for 6 hour 

cumulative rainfall including UK maximum point (left). Probability box formed by the maximum and 

minimum values of all fitted distributions. 
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 4.4. 12 Hour Cumulative 
 

 

 

Figure 15: Histogram of mean and lower and upper 95% confidence bounds for 12 hour cumulative 

predictions associated with the 506 disruption events (left). Empirical Disruption/Conditional Probability 

Curve for 12 hour cumulative rainfall (right). 

 

 

 

Figure 16: Cumulative distributions fitted to empirical conditional probability values for 12 hour 

cumulative rainfall including UK maximum point (left). Probability box formed by the maximum and 

minimum values of all fitted distributions. 
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4.5. 24 Hour Cumulative 

 

 

Figure 17: Histogram of mean and lower and upper 95% confidence bounds for 24 hour cumulative 

predictions associated with the 506 disruption events (left). Empirical Disruption/Conditional Probability 

Curve for 24 hour cumulative rainfall (right). 

 

 

 

Figure 18: Cumulative distributions fitted to empirical conditional probability values for 24 hour 

cumulative rainfall including UK maximum point (left). Probability box formed by the maximum and 

minimum values of all fitted distributions. 
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5. Conclusion and Discussion 

 

This report has illustrated the methodology developed to build empirical fragility curves for critical 

road sections belonging to the Scottish Trunk Road network, relating the conditional probability of road 

failure to the intensity of the rainfall event. Using this methodology, fragility curves have been built by 

considering different aggregate rainfall observations. The fragility curves are presented with a 95% 

confidence interval to account for the uncertainty that is present at various stages of the analysis.  

While this study fills a critical gap in the quantification of the risk of the Scottish Trunk Road network 

to extreme precipitation, there are several areas for potential improvement. The analysis is carried out 

over a 7 year timespan, which may be too short a time period to sufficiently represent the problem or 

underlying uncertainties. The longer the timespan over which the analysis is considered, the more likely 

the conditional probability of failure estimates will converge to the true values, and this will also lead 

to a tightening of the confidence interval. Additionally, the range of rainfall values observed will 

increase and so the full structure of the fragility curves will become clearer. While distributions have 

been fitted to the estimated conditional probabilities, it should be noted that extrapolating too far beyond 

the fitted points is ill advised, and the true structure of the fragility curves in the most extreme regions 

is unknown. It follows that this process should be repeated when more disruption information data has 

been gathered. 

Furthermore, the analysis is based on the assumption that the IRIS database is representative of the true 

number of road failures. This is not the case since if multiple failures occur at once, the failures are 

prioritised by OC’s in order of importance and so some road flood events that require attention may go 

without a response and will not be recorded. Hence the true value of the probability of failure is likely 

higher than the values that are presented within this report. An adjustment factor based on the response 

rate of the operating companies could be incorporated into the estimates to make the analysis more 

robust. Similarly, more precise timing information from the IRIS database would allow for the analysis 

windows to be tighter and may describe the disruption likelihood more precisely. An investigation into 

the nature and frequency of simultaneous events would also provide vital vulnerability information but 

is outside the scope of this investigation. Moreover, in order to estimate the average fragility of the 

whole network, the developed methodology should be extended by including also the cases of no failure 

for a given rainfall intensity. 

 

A major area of improvement regards the simplistic approach to the cause of flooding. In essence it is 

assumed that flood events are caused by rainfall on the road section. This assumption does not take into 

consideration the relative position of the road to the surrounding landscape or the geometry of the road 

itself. It is likely that a number of flood events are caused by runoff from the surrounding landscape 
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and so it may be beneficial to repeat this process using a block or catchment approach where each 

location is assigned a catchment and the total rainfall for the catchment, perhaps normalized by the area 

of the catchment, is considered instead of simply the rainfall at each location. This would lead to a more 

comprehensive understanding of the causes of rainfall related disruption. 

Rainfall estimations could be improved through the application of cokriging. At the outset of this 

investigation, cokriging was ruled out given the increased computational time required to solve the 

cokriging matrices versus the available computational resource. With additional computing resource, 

cokriging or co-located cokriging could be applied to give more accurate rainfall estimations. The 

process variance would likely be smaller and hence the confidence intervals of the fragility curves 

would be tighter. 

As a side note, the analysis considers only the risk of disruption from extreme precipitation. If the 

overall risk were to be evaluated this analysis would have to be extended to consider risk to life and 

injury from extreme events through analysis of road accident reports.  
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Appendix 
 

A.1.1 Expected Value and Semivariance 

 

Before a description of the multiple kriging processes is presented, it is important to introduce the 

concepts that kriging utilises, mainly expected value, covariance and semivariance. 

The expected value of a random variable is the weighted average of the possible values that this function 

can take (Rubinstein 2017). In the discrete case: 

Equation 6 𝐸[𝑋] =  ∑ 𝑥 𝑝(𝑥) 

Where p(x) is the probability of x. Another useful quantity is the variance, which measures the spread 

or dispersion of the distribution from the expected value: 

Equation 7 𝑉𝑎𝑟(𝑋) = 𝐸[(𝑋 − 𝐸[𝑋])2] 

For the normal distribution, the expected value is mean 𝜇 and the variance is σ2.  

Semivariance is used to model the spatial autocorrelation of a random variable or attribute over a 

geographic region. The semivariance function, also referred to as the experimental variogram, is used 

to describe the degree of spatial dependence between pairs of observations as a function of distance or 

lag. In kriging, the semivariance is used to estimate the covariance structure of the underlying random 

process. The variogram is estimated by applying the Matheron’s method, which in one dimension 

corresponds to the following equation (Oliver 2015): 

Equation 8 𝛾(ℎ) =
1

2𝑚(ℎ)
∑ {𝑧(𝑥𝑖) − 𝑧(𝑥𝑖 + ℎ)}2𝑚(ℎ)

𝑖=1  

where 𝛾(ℎ) is the average semivariance between two points at distance h, 𝑧(𝑥𝑖) and 𝑧(𝑥𝑖 + ℎ) are the 

observed values at location 𝑥𝑖 and 𝑥𝑖 + ℎ. When these semivariances are calculated and plotted against 

there respective lag h, this constitutes the experimental variogram. 



 

- 36 - 
 

 

Figure 19: variogram diagram (aspetix 2019). 

 

The variogram in Figure 19 displays three key properties: range, sill, and nugget. The range is the 

maximum distance at which spatial correlation is present and beyond which it becomes negligible, while 

the sill is the level of variance observed at this range. The nugget, or non-zero intercept, indicates a 

discontinuity in variation, which can arise due to measurement errors or variations over distances 

shorter than the smallest sampling interval. Typically, the nugget variance is a small component of the 

overall variation (Oliver 2015).  

The kriging model’s reliability is highly dependent the accurate fitting of the experimental variogram 

(Oliver 2015). If the variogram describes the variation poorly, then the kriged predictions are also likely 

to be poor. Accuracy of the variogram depends on the following factors: 

• Size of the sample. 

• Number of lags used for estimation.  

• Lag interval relative to the spatial scale of variation 

• Marginal distribution of the variable (probability distribution of the separated behaviour of a 

single variable in a multivariant system). 

• Anisotropy (property where a system exhibits different behaviour in different directions). 

For a thorough analysis of the sensitivity of the semivariogram to these factors please refer to Basic 

Steps in Geostatistics: The Variogram and Kriging, Chapter 3.2 Factors Affecting the Reliability of 

Experimental Variograms (Oliver 2015). 
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There are a number of different functions available for fitting the experimental semivariance points, the 

most common of which are spherical and exponential. Verworn and Haberlandt did an analysis on the 

spatial interpolation of hourly rainfall and the effect of adding additional information. They stressed the 

time consuming nature of applying individual variograms to each hourly timestep and suggested 

generating event specific variograms (Verworn 2011). An alternative is to autofit a number of 

variograms and select the best performing using a suitable performance metric.  

 

A.1.2. Simple Kriging 

 

In simple kriging the mean of the variable is assumed to be known and constant across the entire study 

area. The kriging estimator then incorporates this information into the interpolation process. Simple 

kriging can provide more accurate estimates when the mean of the variable is well-known or easily 

estimated. In simple kriging, the variance of the estimator depends on the spatial autocorrelation and 

the estimation error. 

Kriging estimates the unknown values at unobserved locations by minimizing the prediction error 

variance, subject to the constraint that the predictions are unbiased and consistent with the observed 

values (Oliver 2015). Estimate �̂�(𝑥0) for unknown location x0 is calculated by: 

Equation 9 �̂�(𝑥0) = ∑ 𝜆𝑖𝑍(𝑥𝑖) + {1 − ∑ 𝜆𝑖
𝑁
𝑖=1 }𝑁

𝑖=1 𝜇 

where 𝜇 is the constant mean value over the entire region of interest, 𝜆𝑖 are the weights. In simple 

kriging, the weights assigned to neighbouring data points are determined based on the spatial correlation 

or covariance structure of the data and are calculated to minimize the estimation error while honouring 

the assumed mean (Oliver 2015). The simple kriging variance is given by:  

Equation 10 𝜎𝑆𝐾
2 (𝑥0) = 𝐶(0) − ∑ 𝜆𝑖𝐶(𝑥𝑖, 𝑥0)𝑁

𝑖=1  

where C(0) is the variance of the random process and 𝐶(𝑥𝑖, 𝑥0) is the covariance between known 

location 𝑥𝑖 and target location 𝑥0 (Oliver 2015). 

 

A.1.3. Ordinary Kriging 

 

In real world problems, the true mean and covariance function of the underlying random function Z(x) 

are unknown, making simple kriging unapplicable for most practical problems. Ordinary kriging does 

not assume a known constant mean, but assumes a quasi-stationary condition (varying mean but 

constant covariance) (Negreiros 2010). Ordinary kriging estimates are robust even with moderate 

departures from stationarity conditions. The mean is assumed stationary in the local search 
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neighbourhood i.e. a local mean at each point is calculated based on the neighbouring observations. 

This allows for greater flexibility in modelling the spatial autocorrelation of the variable and can be 

useful in cases where the mean varies across the study area. In ordinary kriging, the variance of the 

estimator also includes the estimation error associated with the local mean estimate. Estimate �̂�(𝑥0) for 

unknown location x0 is calculated by: 

Equation 11 �̂�𝑂𝐾(𝑥0) = ∑ 𝜆𝑖𝑍(𝑥𝑖)𝑁
𝑖=1  

As with simple kriging, the predictions are unbiased. To ensure this the weights of ordinary kriging are 

constrained to sum to 1 (Oliver 2015): 

Equation 12 ∑ 𝜆𝑖 = 1𝑁
𝑖=1  

The variance of the predictions is given by: 

Equation 13 𝜎𝑂𝐾
2 (𝑥0) = 2 ∑ 𝜆𝑖𝛾(𝑥𝑖 − 𝑥0) − ∑ ∑ 𝜆𝑖𝜆𝑗𝛾(𝑥𝑖 − 𝑥0)𝑁

𝑗=1
𝑁
𝑖=1

𝑁
𝑖=1  

Where the quantity γ(𝑥𝑖 − 𝑥0) is the semivariance of Z between known location 𝑥𝑖 and target location 

𝑥0 whereas 𝛾(𝑥𝑖 − 𝑥0) is the semivariance between the i-th and j-th sampling locations (Oliver 2015). 

 

A.1.4. Universal Kriging 

 

Simple and ordinary kriging assume a stationarity or quasi-stationarity of the real-valued random 

function Z(x). But in reality the mean value of some spatial data cannot be assumed constant in general, 

since it will most likely depend on the absolute location of the sample. For example, the intensity of 

rainfall is higher on average in the west coast of Scotland compared to the east, and spatial variations 

are observed in the relationship between rainfall and altitude across the UK (Salles 2001). Universal 

kriging is introduced as a method that splits the random function into a linear combination of non-

stationary deterministic functions with a random residual function. The estimation of �̂�(𝑥0) is the same 

formulation as before: 

Equation 14 �̂�(𝑥0) = ∑ 𝜆𝑖𝑍(𝑥𝑖)𝑁
𝑖=1  

where the underlying random function can be expressed as the sum of non-random trend function 

𝜓(𝑥) and residual random function 𝑌(𝑥): 

Equation 15 𝑍(𝑥) =  𝜓(𝑥) + 𝑌(𝑥) 

Trend function 𝜓(𝑥) can be evaluated using a regression model. Here the formula is presented for a 

linear regression model of latitude L1 and longitude L2: 

Equation 16 𝜓(𝑥) =  𝑎0 + 𝑎1𝐿1(𝑥) + 𝑎2𝐿2(𝑥) 
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Where a0, a1 and a2 are the regression coefficients. Hence the full estimation term is expressed by 

substituting Equation 15 and Equation 14 into Equation 11:  

Equation 17 �̂�(𝑥0) = ∑ 𝜆𝑖{𝑎0 + 𝑎1𝐿1(𝑥) + 𝑎2𝐿2(𝑥) + 𝑌(𝑥𝑖)}𝑁
𝑖=1  

Universal kriging is particularly useful when the trend component of the data is significant and needs 

to be accurately estimated to make reliable predictions or to perform spatial interpolation as it allows 

the trend component to be modelled explicitly as a function of the spatial coordinates and estimates 

both the trend and the residual components simultaneously. Wagner et al. found that for daily rainfall 

estimates, interpolation methods that use covariates outperform univariate interpolation methods 

(Wagner 2012). 

 

A.1.5. Kriging with External Drift 

If additional variables exist that are linearly related to the target variable, it is possible to incorporate 

them into the kriging system to improve predictions. In this case the assumption of a constant expected 

value is replaced with the linear relationship between the target and correlated variable. The formulation 

of kriging with an external drift is similar to that of universal kriging; however, in the external drift 

model, the deterministic component (Equation 15) is assumed to be linearly related to a set of auxiliary 

variables. In the case of kriging with external drift The estimation of �̂�(𝑥0) is: 

Equation 18 �̂�(𝑥0) = ∑ 𝜆𝑖𝑍(𝑥𝑖)𝑁
𝑖=1  

For: 

Equation 19: ∑ 𝜆𝑖𝑍(𝑥𝑖) ∙ 𝑞𝑘(𝑥𝑖) = 𝑞𝑘(𝑥0)𝑁
𝑖=1   for k=1, …, p 

Where 𝑞𝑘 is the k-th predictor variable, p is the number of predictors and the other symbols have their 

usual meanings. The variance of the predictions is given by: 

Equation 20 𝜎𝐾𝐸𝐷
2 (𝑥0) = 𝐶0 + 𝐶1 − 𝑐0

𝑇 ∙ 𝜆0 

Where C0 and C1 are estimated parameters of the semi-variance function, and c0
T is the extended vector 

of variances at the new location:  

Equation 21  𝑐0
𝑇 = {𝐶(𝑥0, 𝑥1), … 𝐶(𝑥0, 𝑥𝑛), 𝑞1(𝑥0), … 𝑞𝑝(𝑥0)}𝑇;  𝑞0(𝑥0) = 1 

 

A.1.6. Regression Kriging 

Regression kriging used is alternative to universal kriging but instead of the trend component being 

modelled explicitly and the trend and residual components simultaneously estimated, the trend 

component is evaluated using a regression model, such as linear or non-linear regression. Once the 

regression model is fitted, the residuals of the model, which represent the spatially correlated variation 
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that cannot be explained by the covariates, are interpolated using ordinary kriging. The trend component 

and residual estimation are then combined to obtain the final predictions. 

Regression kriging has several advantages over traditional kriging methods, including the ability to 

incorporate covariate information, which can improve the accuracy of the predictions, and the ability 

to quantify the relative importance of the covariates in predicting the variable of interest. 
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A.2. Fragility 

 

Fragility is a concept used in reliability engineering to describe the probability of failure of a system or 

component, given a specific set of conditions or events. It is also known as the conditional failure 

probability or the conditional probability of non-performance. In reliability engineering, a system or 

component is considered to have failed if it is unable to perform its intended function or meets some 

other specified criterion for failure. The probability is a rule that assigns a number between 0 and 1 to 

a given event, with zero being non chance occurrence and 1 being a certain change of occurrence. The 

probability of failure is denoted as 𝑃(𝐹): 

Equation 22 𝑃(𝐹) =  
𝑁𝐹

𝑁𝑜
 

Where 𝑁𝐹 is the number of failures and 𝑁𝑜 is the number of observations. The probability of a rainfall 

of given intensity x occurring is denoted as 𝑃(𝐼 = 𝑥): 

Equation 23 𝑃(𝐼 = 𝑥) =  
𝑁𝐼=𝑥

𝑁𝑜
 

Where 𝑁𝐼=𝑥 is the number of rainfall events with a given intensity x.  The conditional probability of 

failure is calculated by considering the probability of failure given certain conditions. The conditional 

probability of failure given a certain rainfall intensity level 𝑃(𝐹|𝐼 = 𝑥), is described mathematically as 

(Rubinstein 2017): 

Equation 24 𝑃(𝐹|𝐼 = 𝑥) =  
𝑃(𝐹∩𝐼=𝑥)

𝑃(𝐼=𝑥)
 

Where 𝑃(𝐹 ∩ 𝐼 = 𝑥) is the intersection between failure events and rainfall events of a given intensity 

x: 

Equation 25 𝑃(𝐹 ∩ 𝐼 = 𝑥) =
𝑁𝐹.𝐼=𝑥

𝑁𝑜
 

Where 𝑁𝐹,𝐼=𝑥 is the number of failures when I = x. Substituting Equation 25 and Equation 23 into 

Equation 24 and eliminating 𝑁𝑜 yields: 

Equation 26 𝑃(𝐹|𝐼 = 𝑥) =  
𝑁𝐹,𝐼=𝑥

𝑁𝐼=𝑥
 

When this formula is applied to discretised intensity level values, a set of points describing the 

conditional probability of failure can be produced, Figure 20. 
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Figure 20: Conditional probabilities for arbitrary intensity measure with regularly spaced intensities 

showing upper and lower limit of ±20%.  
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A.3. Monte Carlo Method 

 

Monte Carlo methods are a set of computational techniques used to simulate and analyse complex 

systems or processes. They model the behaviour of a system by extracting random samples from a 

probability distribution that represents the input parameters of the system being modelled. In the context 

of this report, each kriging estimation, which is unbiased, has an associated process variance and hence 

it can be described for each timestep and each location as follows:  

Equation 27 𝐼𝑀𝐶 = 𝐸[𝐼] + 𝜀(0, 𝜎𝐾𝑟𝑖𝑔) 

Where 𝐼𝑀𝐶 denotes the intensity of the Monte Carlo sample observation, 𝜀 is the error random variable, 

with Gaussian distribution, zero mean and standard deviation which is the square root of the kriging 

process variance 𝜎𝐾𝑟𝑖𝑔 and 𝐸[𝐼] is the expected value of the intensity from the kriging estimation.  

With the Monte Carlo method, n random samples are drawn from this error distribution for each point 

and applied to the location and timestep mean prediction. Each Monte Carlo sample is then treated in 

turn and the conditional probability of failure for the n-th Monte Carlo sample 𝑃(𝐹|𝐼𝑀𝐶,𝑛 = 𝑥) by 

modifying Equation 21 to: 

Equation 28 𝑃(𝐹|𝐼𝑀𝐶,𝑛 = 𝑥) =  
𝑁𝐹,𝐼𝑀𝐶,𝑛=𝑥

𝑁𝐼𝑀𝐶,𝑛=𝑥
 

With the expected value of the conditional probability for a given intensity over n Monte Carlo samples 

equal to the mean: 

Equation 29 𝐸[𝑃(𝐹|𝐼𝑀𝐶 = 𝑥)] =
1

𝑛
∑ 𝑃(𝐹|𝐼𝑀𝐶,𝑚 = 𝑥)𝑛

𝑚=1  

And variance: 

Equation 30 𝑉𝑎𝑟(𝑃(𝐹|𝐼𝑀𝐶 = 𝑥)) = 𝐸[(𝑃(𝐹|𝐼𝑀𝐶 = 𝑥) − 𝐸[𝑃(𝐹|𝐼𝑀𝐶 = 𝑥)])2] 

By generating a large number of random samples, the Monte Carlo method can provide a 

comprehensive picture of the possible outcomes of the system. By considering the normal distribution 

of probability values about the expected conditional probability value, a confidence interval can be 

defined by 95% z-score with upper and lower bound: 

Equation 31 𝑢𝑝𝑝𝑒𝑟95% = 𝐸[𝑃(𝐹|𝐼𝑀𝐶 = 𝑥)] + 1.96√
𝑉𝑎𝑟(𝑃(𝐹|𝐼𝑀𝐶 = 𝑥))

𝑛
 

Equation 32 𝑙𝑜𝑤𝑒𝑟95% = 𝐸[𝑃(𝐹|𝐼𝑀𝐶 = 𝑥)] − 1.96√𝑉𝑎𝑟(𝑃(𝐹|𝐼𝑀𝐶 = 𝑥))

𝑛
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